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Similar to classical network coding, quantum network coding is an important tech-
nique for alleviating bottlenecks in quantum networks. This thesis considers a newly
developed protocol, measurement-based quantum network coding for repeater networks
(MQNC), and studies its behavior using Monte-Carlo simulation under noisy condi-
tions. By exploiting measurement-based quantum computing, operation on qubits
proceeds in parallel. This thesis shows that that such an approach offers advantages
over other schemes in terms of the quantum circuit depth. The circuit depth of MQNC
has been reduced by 52% compared to the quantum network coding protocol (QNC)
introduced in 2012 by Satoh, et al.

Evaluation of the circuit has been done through a comparison of the simulation
results with Buffer-Space Multiplexing using entanglement swapping (ES) and QNC.
The output fidelity in this thesis depends on the initial Bell pair fidelity and the local
operation fidelity.

For MQNC, the resulting entangled pairs’ joint fidelity drops below 50% when the
accuracy of local operations is under 99%, assuming that all initial Bell pairs across
quantum repeaters have a fixed fidelity of 98%. Overall, MQNC showed substantially
higher error tolerance compared to QNC and slightly better than ES, but with no
relative advantage over both protocols with the artificial model of only initial resource
errors.
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卒業論文要旨 2017年度 (平成 29年度)

量子中継器ネットワークのための測定型量子ネットワークコーディング
プロトコルの提案およびノイズ下における性能評価

量子通信における量子ネットワークコーディングは、古典通信におけるネットワー
クコーディングと同様に、量子ネットワークのボトルネックを緩和するための重要な
技術である。しかし、現段階の既存研究成果は、バッファ空間多重化方式のような代
替的な対応策に対して大きな優位性を示しきれていない。そこで、本研究では、量子
中継機ネットワーク上において測定型量子計算を応用した量子ネットワークコーディ
ング (MQNC)を提案する。提案したプロトコルは、古典ネットワークコーディングを
模した手法ではなく、測定型量子計算を用いることでトポロジ的に量子ネットワーク
コーディングを行うことで、手順の並列化を実現した。その為、回路モデルの非測定
型量子ネットワークコーディング (QNC)と比較して、量子回路の深さを約 52%に縮小
することに成功した。
本研究の優位性を検証するため、モンテカルロ・シミュレーションによって量子回

路へのノイズを再現した環境上において、既存研究であるエンタングルメント・スワッ
ピングを使用したバッファ空間多重化方式 (ES)、および、QNCと統計的に比較するこ
とで性能評価実験を行った。シミュレーションの結果から、MQNCにおいて量子通信
リソースとしての Fidelityの最低値とされている Foutput = 50%を保持するためには、
初期値リソースの Fidelityが Finput = 98%の時、各ゲート操作の精度として最低でも
Foperation = 99%が必要であることが立証された。また、MQNCはES、QNCと比較し
て初期リソースエラーに対する耐性が低いものの、ゲートエラーや測定エラー等を含
めた総合的なエラーに対する耐性はQNCの約 2倍向上され、ESと比較しても優位で
あることが明らかとなった。

キーワード
1. 量子通信, 2. 量子計算, 3. 量子ネットワークコーディング, 4. 量子中継器ネットワーク,
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Chapter 1

Introduction

This chapter discusses the background, contribution of this thesis and the structure of
the remaining chapters.

1.1 Background

Network coding, proposed by Ahlswede, Cai, Li, and Yeoung [1], is a technique used for
alleviating bottlenecks in a network, and therefore is capable of enhancing throughput
for certain traffic patterns, by linearly combining messages and sending them simul-
taneously instead of just forwarding one by one. The linear combination of packets
also contributes to the network robustness, mitigating packet losses and link failures
without a need to re-transmit the original data from the source [2, 3].

Resource contention is not only a problem that occurs in classical networking but
also in quantum. To tackle such issue, a number of quantum network coding techniques
have been proposed. Unlike classical network coding, unknown quantum states cannot
be replicated, which forbids the direct application of the classical approach to quantum
network coding. While there are multiple protocols proposed that directly encode on
the message qubits, the ability to manipulate the quantum channels also allows us to
complete the quantum network coding without touching the message qubit until the
very end of the protocol.

Recently introduced quantum network coding protocols are generally designed based
on the classical algorithm, CNOT operation which is the quantum equivalent of XOR,
and have high circuit complexities compared to general quantum routing protocol using
entanglement swapping. As a consequence, prior work have not been able to demon-
strate much advantage in terms of fidelity over simpler protocols such as the buffer-
space multiplexing and the time-division multiplexing.

1.2 Research Contribution

The protocol that has been developed (MQNC) in this thesis does not imitate the
classical network coding protocol (no use of CNOT operation which is the quantum
equivalent of classical XOR) but instead introduces a completely different approach
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by dynamically manipulating the network links using Measurement-based Quantum
Computing (MBQC) and topologically completing the network coding. As a result,
the circuit depth of MBQC has been halved compared to the quantum network coding
protocol introduced in 2012 by Satoh et al [4].

Through the study of the designed protocol using Monte-Carlo simulation, the ad-
vantage of MQBC in terms of error tolerance over alternative solutions has been shown
numerically. The simulation also revealed that having two byproduct operators for
each measurement is not always a disadvantage but the synchronization of error prop-
agations and cancellations can improve the joint fidelity of the two output entangled
states. Lastly, this thesis clarified that qubit memories are the main causes of commu-
nication infidelity, and therefore should be improved prior to gate and measurement
accuracies.

1.3 Thesis structure

The remaining of the thesis is constructed as follows. In Chapter 2, basics of quantum
information are provided as a preliminary to support the readers with minimal knowl-
edge. In Chapter 3, current status of experimental work is introduced. In Chapter 4,
several related publications are briefly explained. In Chapter 5, the protocol design of
measurement-based quantum network coding over repeater networks is being explained
step-by-step in detail. In Chapter 6, main results of Monte-Carlo simulations are dis-
cussed with various settings over multiple protocols. Finally in Chapter 7, this thesis
is concluded with some discussions regarding the future work.
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Chapter 2

Theory of Quantum Information

2.1 Historical background of Quantum Computa-

tion

In 1982, a physicist named Richard Feynman [5], noted that it is generally not feasible
to represent the results of quantum mechanics with a classical universal device. The
newly introduced concept, quantum simulation, took the advantage of the puzzling
quantum effects to effectively simulate physics, which can not be handled by ordinary
computers regardless to its computation power.

The term ”Quantum Computer” was officially used in print for the first time in
1985, by physicist David Deutsch [6]. He proposed a mathematical concept of a strictly
modeled universal computer based on quantum mechanics with many properties not
reproducible by classical Turing machines, and generalized computing methods for
quantum computers.

Meanwhile, quantum networking appeared as a subfield of quantum computing.
The algorithm named BB84, Quantum key distribution (QKD), was firstly proposed
by Bennett and Brassard [7] in 1984, and came into the experimental forefront in 1989
[8]. The algorithm was widely recognized across the globe, as a result of its promising
security by exploiting quantum mechanics.

Later on, in 1994, Peter Williston Shor [9] at Bell Laboratories introduced a quan-
tum algorithm that has the capability of factorizing large numbers within polynomial
time - known as Shor’s algorithm. The algorithm essentially showed that quantum
computers have abilities of breaking commonly used classical cryptography techniques
based on prime number factorization such as the RSA cryptography.

The theoretical proposal of quantum teleportation, which is a technique to map
an arbitrary state of qubit to another, was introduced by Bennett, Brassard, Crépeau
et al [10]. A while after, it was successfully demonstrated experimentally and became
one of the essential ingredients for quantum networking [11][12]. In order to achieve
long distance quantum communication, intermediate nodes called ”quantum repeaters”
were introduced by Briegel and Dür [13] [14] in the late 1990s, as a tool for managing
errors, creating entanglements and enabling multi-hop communications. Nevertheless,
establishing a stable quantum communication over long distances still remains an out-
standing challenge due to technical problems such as the operation errors and qubit
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degradation.

2.2 Qubit

The indivisible unit of a classical information is known as binary digit or bit. A single
bit has a single binary value that is not limited to, but in general expressed with 0 and
1. The two values of a bit in a classical computer may be represented by the electric
charge stored in a capacitor, the direction of a magnetic field, or anything else that is
capable of physically representing two values. Similarly, the smallest unit of a quantum
information is known as quantum bit or qubit 1. Unlike a bit, a single qubit can be in
a superposition state of two states, simultaneously representing 0 and 1. The two-level
system of a quantum computer may be represented by the vertical polarization and
the horizontal polarization of a photon, the spin up and the spin down of an electron,
or any other proposed state variables.

2.2.1 Dirac notation

The simplest quantum system is a two-state system, and the single qubit pure state
can be expressed by using the Dirac notation:

|ψ⟩ = α |0⟩+ β |1⟩
| α |2 + | β |2= 1 (2.1)

Coefficients α and β are arbitrary complex numbers representing the probability
amplitudes. The |0⟩ and |1⟩ are called kets and denote the two possible states, where
the probability of the state being |0⟩ can be found by the quantity α×α∗ =| α |2, and
β × β∗ =| β |2 for |1⟩. As an example, |ψ⟩ = 1√

2
|0⟩ + 1√

2
|1⟩ indicates that the state

|ψ⟩ is in a superposition of two states |0⟩ and |1⟩ with equally weighted probabilities.
A quantum state can also be described by a vector in a two dimensional complex

Hilbert space. State vectors of a single qubit may be:

Z-basis state

|0⟩ ≡
[
1
0

]
|1⟩ ≡

[
0
1

]
(2.2)

Therefore, the superposition state of a single qubit can be expressed by the following
two-dimensional vector.

|ψ⟩ = α |0⟩+ β |1⟩ = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
(2.3)

1The term qubit just had its 25th anniversary.
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The computational vectors introduced in equation 2.2 are called the Z-basis states,
and a linear combination of them can be used to express any pure quantum state. The
alternative computational bases, the X-basis states and the Y-basis states are equally
important. The X-basis states are based on the superposition states:

(2.4)

X-basis state

|+⟩ ≡ 1√
2

[
1
1

]
|−⟩ ≡ 1√

2

[
1
−1

]
. (2.5)

Similarly, the Y-basis states uses the complex bases:

(2.6)

Y-basis state

|+i⟩ ≡ 1√
2

[
1
i

]
|−i⟩ ≡ 1√

2

[
1
−i

]
. (2.7)

Contrasting to ket, ⟨ψ| is called bra which represents the conjugate transpose of |ψ⟩.

|α⟩ =


α1

α2

α3
...
αn

 ⟨α| =
[
α∗
1 α∗

2 α∗
3 · · · α∗

n

]
(2.8)

2.2.2 Bloch sphere

The Bloch sphere is a geometric representation of a single qubit pure state as a unit
vector pointing on the surface of a unit sphere.

The arbitrary single qubit state can be written:

|ψ⟩ = eiλ(cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩) (2.9)

0 ≤ θ ≤ π

0 ≤ ϕ ≤ 2π

where variables θ, ϕ and λ are real numbers. The number θ represents the latitude
with respect to Z-axis and ϕ represents the longitude with respect to Y-axis. Together
they define a point on the Bloch sphere surface. The variable eiλ is known as the global
phase of a quantum state, and has no observable effects. Therefore, equation 2.9 can
simply be rewritten as:
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Figure 2.1: Quantum State described on a Bloch Sphere

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (2.10)

Hence, cos θ
2
and eiϕ sin θ

2
correspond to α and β in equation 2.1 with α constrained

to be real.

2.2.3 Eigenvalue and Eigenvector

The eigenvalue and the eigenvector are some important concepts for quantum infor-
mation.

As an example, if an operator U acts on a vector |ψ⟩ and the result can be rearranged
to a scalar λ and the same vector |ψ⟩:

U |ψ⟩ = λ |ψ⟩ (2.11)

Such λ is called the eigenvalue and the corresponding vector |ψ⟩ is called the eigen-
vector. In general, the eigenvalue is a complex number but here we often see it as a
real number, ±1. For example, performing a Pauli-Z gate to a state |1⟩ will result in:

Z |1⟩ = − |1⟩ (2.12)

where in this case, the eigenvector of Z is |1⟩ with an eigenvalue is -1.

2.2.4 Measuring a qubit

Measuring a qubit will destroy the superposition state and determine the state in a
classical fashion. The measurement outcome of a quantum state is the eigenvalue of
the eigenvector.

6



As an example, if the qubit state is:

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ =

[
1√
2
1√
2

]
(2.13)

the probability amplitude is equally weighted with respect to the Z-basis. There-
fore, measuring the state in Z-basis will return the observer either +Z or −Z with
a probability of 50%. Changing the measurement basis may affect the measurement
result. That is to say, if we use the X-basis for the measurement instead of Z, then the
measurement result will always be +X.

If we measure the qubit |ψ⟩ in the Z-basis, measurement outcomes 0 and 1 can be
obtained with probabilities:

P (0) =| ⟨0| |ψ⟩ |2= Tr[|0⟩ ⟨0| ⟨ψ|ψ⟩] (2.14)

P (1) =| ⟨1| |ψ⟩ |2= Tr[|1⟩ ⟨1| ⟨ψ|ψ⟩] (2.15)

More generally, the above equation can be expressed using measurement operators
Mi.

P (i) = ⟨ψ|M †
iMi|ψ⟩ = Tr[M †

iMi |ψ⟩ ⟨ψ|] = Tr[Ei |ψ⟩ ⟨ψ|] (2.16)

where Ei is a set of positive operators such that ΣiEi = I.
The measurement operator can be obtained by:

M±
i =

1

2
(I ± U) (2.17)

where U in this case is the matrix set U = { Z, Y,X }. As an example, the Z-basis
measurement operators can be obtained by:

M+
Z =

1

2
(I + Z) =

1

2
(

[
1 0
0 1

]
+

[
1 0
0 −1

]
) =

[
1 0
0 0

]
(2.18)

M−
Z =

1

2
(I − Z) =

1

2
(

[
1 0
0 1

]
−
[
1 0
0 −1

]
) =

[
0 0
0 1

]
(2.19)

2.3 Composite quantum systems

In reality, a system may contain more than one qubit. An independent two-qubit
system may have states:

|ψ⟩ = α |0⟩+ β |1⟩ (2.20)

|ϕ⟩ = γ |0⟩+ δ |1⟩ (2.21)
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Here, the joint system can be described by taking the tensor product of equation
2.20 and equation 2.21.

|ψ⟩ ⊗ |ϕ⟩ = αγ |00⟩+ αδ | 01⟩+ βγ | 10⟩+ βδ |11⟩ =


αγ
αδ
βγ
βδ

 (2.22)

| αγ |2 + | αδ |2 + | βγ |2 + | βδ |2= 1

where ⊗ is the tensor product of two vectors, and |00⟩ equates to |0⟩ |0⟩. The tensor
product of two vectors is:

[
a1
b1

]
⊗
[
a2
b2

]
=

a1
[
a2
b2

]
b1

[
a2
b2

]
 =


a1a2
a1b2
b1a2
b1b2

 (2.23)

The vector representation of two-qubit basis states are:

|00⟩ =


1
0
0
0

 , |01⟩ =

0
1
0
0

 , |10⟩ =

0
0
1
0

 , |11⟩ =

0
0
0
1

 (2.24)

Similarly, three qubits can be in eight states, and n qubits can be in a superposition
of all 2n states simultaneously.

2n−1∑
i=0

αi |i⟩ (2.25)

2n−1∑
i=0

| αi |2= 1

2.4 Entanglement

Two or more qubits can be in an entangled state, where each qubit’s state cannot
be described independently. That is to say, an operation on one entangled qubit will
immediately affect the other pair regardless to the physical distance between.

2.4.1 Bell pair/Einstein-Podolsky-Rosen (EPR) pair

One common example of an entangled state is called Bell pair or sometimes called ERP
pair:

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) =

∣∣Φ+
⟩

(2.26)
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In the above example, note that each qubit state |00⟩ and |11⟩ have equally weighted
probability, so that each qubit has a 50/50 probability of being found in each state but
not independently. If one qubit’s state is found to be 0, then the other qubit’s state
must be, and will be 0. Therefore, measuring one qubit will also decide the other
qubit’s state. Specifically, the four entangled states that can be used as a basis set is
known as Bell states: ∣∣Φ+

⟩
=

1√
2
(|00⟩+ |11⟩) (2.27)

∣∣Φ−⟩ =
1√
2
(|00⟩ − |11⟩) (2.28)

∣∣Ψ+
⟩
=

1√
2
(|01⟩+ |10⟩) (2.29)

∣∣Ψ−⟩ = 1√
2
(|01⟩ − |10⟩) (2.30)

2.4.2 W state

The W state is an entangled quantum state that consists of 3 qubits, which has a
similar state to the Φ+.

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩) (2.31)

Measuring one qubit will result in either state:

∣∣W 0
⟩
=

1√
2
(|01⟩+ |10⟩) (2.32)∣∣W 1

⟩
= |00⟩) (2.33)

Depending on the measurement result, the residual system is entangled or unen-
tangled.

2.4.3 Greenberger-Horne-Zeilinger (GHZ) state

The GHZ state is an entangled state of more than N ≥ 3 qubits as in equation 2.34.

|ψ⟩ = 1√
2
(|0⟩⊗N + |1⟩⊗N) = |GHZ⟩ (2.34)

The simplest GHZ state includes 3 qubits:

|ψ⟩ = 1√
2
(|0⟩⊗3 + |1⟩⊗3) =

1√
2
(|000⟩+ |111⟩) = |GHZ⟩ (2.35)

Similar to a Bell pair, measuring an arbitrary qubit of the GHZ state decides the
overall state to |000⟩ or |111⟩ with equally weighted probabilities. The GHZ state is
not local operation and classical communication (LOCC) equivalent to the W state -
no local operation can convert the GHZ state to the W state or vice versa.
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2.5 Density matrix

Quantum states are either in mixed or pure state. A pure state is in a closed system,
with no interaction with the outside world. In contrast, a mixed state is when a part of
the quantum system becomes entangled with or is acted upon in unknown ways by the
environment. While any pure state can be written in state-vector form, mixed states
can be described using a density matrix. The density matrix of a pure state |ψ⟩ can
be found by:

ρ = |ψ⟩ ⟨ψ| (2.36)

The corresponding probability of a state |j⟩ can be found by the diagonal entries
of ρ:

P (|j⟩) = ρj,j |j⟩ ⟨j| (2.37)

If the state is pure, ρ2 = ρ and Tr[ρ2] = 1 and if the state is mixed ρ2 ̸= ρ and
Tr[ρ2] < 1.

For example, the density matrix of a pure state Bell pair is:

ρ = |ψ⟩ ⟨ψ| = 1√
2
(|00⟩+ |11⟩) 1√

2
(⟨00|+ ⟨11|)

=
1

2
(|00⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨00|+ |11⟩ ⟨11|) =


1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2

 (2.38)

An example of a completely mixed state of 2 qubits, which represents the classical
dependent probabilities is:

ρ =
1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|) =


1
2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 (2.39)

With a completely mixed state of 2 qubits, there is no entanglement between the
two qubits - each has a state, |0⟩ or |1⟩.

The off-diagonal elements are quantum coherences and can be complex and the
diagonal elements must be real.

2.6 Fidelity

The imperfection of a quantum state can be described by the fidelity. The fidelity is
often defined as :

F =
√

⟨ψ|ρ|ψ⟩ (2.40)
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or more simply [15]:

F = ⟨ψ|ρ|ψ⟩ (2.41)

where 0 ≤ F ≤ 1, |ψ⟩ is the desired ideal state and ρ is the density matrix of the
actual state. With F = 1, the actual state is identical to the desired state.

A single qubit system has a fidelity of 50% with a completely mixed state. Similarly,
in n-qubit system, a completely mixed state has a fidelity of F = 1

2n
.

2.7 Quantum Gates

As modern computers work based on logic gates, quantum computers performs similar
gate operations to manipulate quantum information (see Figure 3.1 for a simplified
model of gate operations). Such gates are often called unitary gates, as they give
unitary transformation of the qubit states. Gates are unitary when †UU = U †U = I.
Quantum gates are reversible and can be represented as unitary matrices.

U|  i U |  i
Figure 2.2: Basic flow of quantum gate operation

2.7.1 Single Qubit Gates

The most important operators for quantum computing are called the Pauli operators.
The Pauli-X gate is the equivalent of the classical NOT gate. The gate can be

performed on a single qubit state and swaps the probability amplitude of |0⟩ and |1⟩.

X =

[
0 1
1 0

]
(2.42)

X

Figure 2.3: Circuit representation of a Pauli-X gate

Therefore, |0⟩ = X |1⟩ and |1⟩ = X |0⟩.
The Pauli-Y gate changes the quantum state |0⟩ to i |1⟩, and |1⟩ to −i |0⟩.

Y =

[
0 −i
i 0

]
(2.43)

The Pauli-Z gate, or sometimes called the phase-flip gate, does not affect the basis
state |0⟩, but changes |1⟩ to − |1⟩, and − |1⟩ to |1⟩.
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Y

Figure 2.4: Circuit representation of a Pauli-Y gate

Z =

[
1 0
0 −1

]
(2.44)

Z

Figure 2.5: Circuit representation of a Pauli-Z gate

Besides Pauli operators, the Hadamard gate and the Phase gate are equally im-
portant operators. These gates can be used to transform between the different basis
states.

The Hadamard gate is as shown below.

H =
1√
2

[
1 1
1 −1

]
(2.45)

H

Figure 2.6: Circuit representation of an Hadamard gate

Applying an Hadamard gate to a qubit will result in:

H |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
= |+⟩ (2.46)

H |1⟩ = 1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2

[
1
−1

]
= |−⟩ (2.47)

H |+⟩ = 1√
2

[
1 1
1 −1

] [
1
1

]
=

1√
2

[
1
0

]
= |0⟩ (2.48)

H |−⟩ = 1√
2

[
1 1
1 −1

] [
1
−1

]
=

1√
2

[
0
1

]
= |1⟩ (2.49)

Notice that an Hadamard gate can bring up a qubit into a superposition state from
a basis state, or vice versa. Moreover, the X gate can be constructed by conjugating
two Hadamard gates and a Z gate: X = HZH.
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Similar to the Z gate, the phase shift gate changes the phase of a quantum state,
from |1⟩ to eiϕ |1⟩. Therefore, if ϕ = π, the phase gate performs on a qubit the same
way as the Z gate. T gate and S gate are for specific, defined values of ϕ.

Zϕ =

[
1 0
0 eiϕ

]
(2.50)

S = Zπ
2
=

[
1 0
0 ei

π
2

]
(2.51)

T = Zπ
4
=

[
1 0
0 ei

π
4

]
(2.52)

S

Figure 2.7: Circuit representation of a S gate

T

Figure 2.8: Circuit representation of a T gate

S gates and X gate can be used to construct Y gate: Y = SXS†. A gate that rotates
the quantum state by 180 degrees does not get affected by the rotational direction;
clockwise or anti-clockwise. As an S gate sometimes performs a rotation of less than
180 degrees, the direction of rotation matters. The clockwise rotation is represented
with S gate, and the anti-clockwise rotation is represented by the dagger of the gate
S† or sometimes S−.

The rotation operator, which rotates the Bloch vector about the X, Y and Z-axis
by a given angle θ, can be described as RP (θ) = e−i θ

2
P , where P represents the axis.

RX(θ) = e−i θ
2
X = cos

θ

2
I − i sin

θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
(2.53)

RY (θ) = e−i θ
2
Y = cos

θ

2
I − i sin

θ

2
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
(2.54)

RZ(θ) = e−i θ
2
Z = cos

θ

2
I − i sin

θ

2
Z =

[
e−i θ

2 0

0 ei
θ
2

]
(2.55)

(2.56)
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2.7.2 Measurement in a circuit

The measurement result of an arbitrary qubit, if any, decides the residual quantum
state. That is to say, two post-measurement residue states may not equate depend-
ing on the measurement results, even with two identical pre-measurement quantum
systems. Therefore, in MBQC, measurement requires a classical feedforward opera-
tion to another qubit to fix the state to a wanted form - sometimes to more than one
qubit. Those operators are often called byproduct operators and are performed based
on classically sent measurement results. As shown in the circuit representation below
at Figure 2.9, the classical message transmission is generally described with double
lines interconnecting the measurement operator and the byproduct operator.

U

Figure 2.9: Circuit representation of a Measurement gate and its byproduct operator

2.7.3 Controlled Gates

Not all gates work on single qubit; some act on two or more qubits. One example
of such gate is the Controlled-NOT (CNOT) gate that performs X gate on one qubit
(the target qubit), if another qubit’s (the control qubit) state is |1⟩. The CNOT gate is
defined by:

Λc,t(X) |ic⟩ |jt⟩ = |ic⟩ |i⊕ jt⟩ (2.57)

i, j = 0, 1 (2.58)

And the corresponding matrix is:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.59)

Similarly, the Controlled-Z (CZ) gate performs the Z operation on the target qubit,
when the controlled qubit’s state is |1⟩. The CZ gate is defined by:

Λc,t(Z) |ic⟩ |jt⟩ = (−1)ij |ic⟩ |jt⟩ (2.60)

i, j = 0, 1 (2.61)

The CZ gate is symmetric, Λc,t(Z) = Λt,c(Z) and the corresponding matrix is:
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Figure 2.10: Circuit representation of a Controlled-NOT gate

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.62)

H H 

Figure 2.11: Circuit representation of a Controlled-Z gate

2.8 Cluster state/Graph state

A cluster state, or sometimes called graph state, is an example of qubits that are
maximally entangled - a maximally entangled state has the maximum Von Neumann
entropy obtainable by the number of qubits in the system. The Von Neumann entropy
is a measure of entanglement:

S(ρ) = −Tr ρ log2(ρ) (2.63)

A cluster state of n vertices (qubits) can be defined by:

|G⟩ =
∏

(a,b)∈E

Λa,b(Z) |+⟩⊗n (2.64)

where E is the set of edges (entanglement) and a, b are the corresponding vertices
(qubits).

As an example, 3-qubit cluster state is:

|ψ⟩ = 1

2
√
2
(|010203⟩+|010213⟩+|011203⟩−|011213⟩+|110203⟩+|110213⟩−|111203⟩+|111213⟩)

(2.65)
where the subscript denotes the labeled number for identification. All states are

equally weighted, and measuring qubit 1 will result in either one of the following system:
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If the measurement result is 0∣∣ψ0
⟩
=

1

2
(|0203⟩+ | 0213⟩+ | 1203⟩ − |1213⟩) (2.66)

If the measurement result is 1∣∣ψ1
⟩
=

1

2
(|0203⟩+ | 0213⟩− | 1203⟩+ |1213⟩) (2.67)

The equation 2.67 equates to equation 2.66 with an additional Z operation to qubit
2 as a byproduct, |ψ0⟩ = Z1 |ψ1⟩. Notice that measuring just one qubit does not fully
decide the remaining state. The 2-qubit cluster state is also LOCC equivalent to the
Bell pair.

2.9 Quantum Teleportation

Using gate operations, it is possible to teleport quantum information from one place
to another. This is not only limited to close distance but also for long distances. The
simplest circuit implementation for quantum teleportation is as shown in Figure 2.12.

H

H

1 X 0 Z
1 

0 

| 0i
| 0i

| �i

| �i = ↵ | 0i+ � | 1i

| �i

Z 

Z 

1 
2 
3 

Figure 2.12: Simple quantum circuit of quantum teleportation

As shown in the above circuit, each measurement comes with a classical feedforward
operation to the residual qubit, which is essential for completing the teleportation of
an arbitrary quantum state. Even though entangled particles always share physical
properties regardless of the distance between, the necessity of classical communication
forbids the transmission of information from one place to another faster than the speed
of light.

H1Λ1,2(X)Λ2,3(X)H2 |03⟩ |02⟩ |Φ1⟩ = H1Λ1,2(X)Λ2,3(X)H2 |0302⟩ ⊗ α |01⟩+ β |11⟩

= H1Λ1,2(X)(
1√
2
(|0302⟩+ |1213⟩)⊗ α |01⟩+ β |11⟩)

= H1(
1√
2
(α |010203⟩+ α |111213⟩+ β |110203⟩+ β |111213⟩)

= (
1

2
(α |010203⟩+ α |110203⟩+ α |011213⟩+ α |111213⟩

−β |111203⟩+ β |011203⟩ − β |110213⟩+ β |010213⟩)
(2.68)
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Depending on the measurement results, byproduct operations are applied to the
remaining qubit to complete the teleportation. For details, see Table 2.1. Each outcome
can be found with equal probability of 25%.

Table 2.1: Byproduct operations to complete quantum teleportation

Measurement result Output state Byproduct operation

0102 α |03⟩+ β |13⟩ I
0112 α |13⟩+ β |03⟩ X
1102 α |03⟩ − β |13⟩ Z
1112 α |13⟩ − β |03⟩ XZ

Notice that when the measurement result of qubit 2 is 1, there is always a bit-flip
error on the remaining qubit. Similarly, when the measurement result of qubit 1 is
1, Z gate is must be applied to qubit 3 as a byproduct to fix the phase. Thus, qubit
3’s state can be manipulated beforehand to avoid any byproduct operation after the
measurement as in Figure 2.13. The communication speed is still not faster than the
speed of light as qubit 3, which is a part of the Bell pair, needs to be sent to another
node to establish a long distance communication.

H

H| 0i
| 0i

| �i

| �i = ↵ | 0i+ � | 1i

| �i

Z 

Z 

1 
2 
3 

Figure 2.13: Simple quantum circuit of quantum teleportation without byproduct op-
erations

The visualized model of quantum teleportation is shown in Figure 2.14.

1 4 
Message  qubit�

Figure 2.14: Visualized model of quantum teleportation
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2.10 Entanglement Swapping

The quantum teleportation technique introduced above is an example of transmitting
one bit of quantum information from one place to another but networking often requires
multi-hop communication. The simplest solution for such demand is to apply quantum
teleportation hop-by-hop. Nevertheless, operating on the message qubit directly many
times degrades the information. Another solution is the use of entanglement swapping
[16], which is capable of lengthening the Bell pair to allow a direct teleportation of
quantum information over multiple repeaters. As shown in Figure 2.15, entanglement
swapping is based on the teleportation circuit that was introduced above and in Figure
2.12. In the below example, 2 Bell pairs are consumed to output 1 end-to-end Bell
pair.

| 0i
| 0i H

H 1 X
1 

0 

| 0i
| 0i

Z 

Z 

1 
2 
3 
4 

H 0 Z

Separate Bell pairs 
Bell state measurement 

Byproduct operations 

Spliced 
Bell pair 

Figure 2.15: Simple quantum circuit of entanglement swapping

Subscripts of operators are identifiers for clarifying the interconnection between the
measurement operator and its byproduct operator.

H2Λ2,3(X)Λ4,3(X)Λ1,2(X)H4H1 |04⟩ |03⟩ |02⟩ |01⟩

= H2Λ2,3(X)
1√
2
(|0102⟩+ |1112⟩)⊗

1√
2
(|0304⟩+ |1314⟩)

= H2
1

2
(|01020304⟩+ |01021314⟩+ |11121304⟩+ |11120314⟩)

1

2
√
2
(|01020304⟩+ |01120304⟩+ |01021314⟩+ |01121314⟩

− |11121304⟩+ |11021304⟩ − |11120314⟩+ |11020314⟩) (2.69)
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Table 2.2: Byproduct operations to complete entanglement swapping

Measurement result Output state Byproduct operation

0203
1√
2
(|0104⟩+ |1114⟩) I

0213
1√
2
(|0114⟩+ |1104⟩) X4

1203
1√
2
(|0104⟩ − |1114⟩) Z1

1213
1√
2
(|0114⟩ − |1104⟩) X4Z1

The byproduct operator, Z gate, can also be applied to qubit 4 instead of qubit 1.
The visualized model is at Figure 2.16.

1 2 3 4 
Message  qubit�

Figure 2.16: Visualized model of entanglement swapping

2.11 Entanglement Purification

Using two or more less-entangled mixed pairs shared among nodes, it is possible to
create one pair with a higher entanglement. The easiest example of entanglement
purification can be shown using 2 Bell pairs as in Figure 2.17.

1 2 

3 4 

Figure 2.17: Visualized model of entanglement purification

In this example, two Bell pairs
∣∣Φ+

1,2

⟩
,
∣∣Φ+

3,4

⟩
are shared between two nodes which

are physically far apart, each holding half of the two pairs. In order to create and check
the parity of two qubits in each node, both nodes locally perform a CNOT operation
and measure one of the pairs with respect to the Z-basis, which destroys one Bell pair.
If the measurement results agree, 0304 or 1314, the remaining pair will have a higher
fidelity than the original pairs given Finput > 50%. On the other hand, the whole
resource needs to be discarded if the measurement results do not agree.
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When Bell pairs are both perfect and gates have no noise Finput = 1.00 and
Foperation = 1.00:

Λ2,4(X)Λ1,3(X)
∣∣Φ+

1,2

⟩ ∣∣Φ+
3,4

⟩
= Λ2,4(X)Λ1,3(X)

1√
2
(|0102⟩)⊗

1√
2
(|0304⟩)

= Λ2,4(X)Λ1,3(X)
1

2
(|01020304⟩+ |01021314⟩+ |11120304⟩+ |11121314⟩)

= Λ2,4(X)
1

2
(|01020304⟩+ |01021314⟩+ |11121304⟩+ |11120314⟩)

=
1

2
(|01020304⟩+ |01021314⟩+ |11121314⟩+ |11120304⟩)

=
∣∣Φ+

1,2

⟩ ∣∣Φ+
3,4

⟩
(2.70)

When either Bell pair is imperfect, a bit-flip error on |Φ+⟩ changes the state to
|Ψ+⟩. Below is the summary of the behavior when Foutput > Finput and Finput > 0.5.

Table 2.3: Entanglement swapping with noisy Bell pairs

Input state Probability Output state Result∣∣Φ+
1,2

⟩ ∣∣Φ+
3,4

⟩
F 2

∣∣Φ+
1,2

⟩
True positive∣∣Φ+

1,2

⟩ ∣∣Ψ+
3,4

⟩
F (1− F ) - True negative∣∣Ψ+

1,2

⟩ ∣∣Φ+
3,4

⟩
F (1− F ) - False negative∣∣Ψ+

1,2

⟩ ∣∣Ψ+
3,4

⟩
(1− F )2

∣∣Ψ+
1,2

⟩
False positive

With an assumption of two Bell pairs having the same fidelity, the probability of
getting the same measurement results can be obtained by F 2

input + (1− Finput)
2, while

the probability of it actually being right is F 2
input. Therefore, The relation between the

input fidelity and the output fidelity after performing entanglement purification can be
derived as:

Foutput =
F 2
input

F 2
input + (1− Finput)2

(2.71)

The iteration of the above steps can be used to create an entangled pair of arbitrarily
high purity Fout < 1.

2.12 Error

Quantum gates are inherently noisy, and may cause errors while operating on qubits.
In general, there are two types of errors that should be taken into consideration, the
bit-flip (X) error and the phase (Z) error - the Y error is a combination of both errors.

Equally important, errors may propagate through quantum circuits throughout the
operation. The Hadamard gate converts bit-flip error to phase error, and phase error
to bit-flip error.
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H

Error on input state Error on output state 

Figure 2.18: Error propagation of Hadamard gate

The CNOT operation will result in a propagation of the bit-flip error on the control
qubit, ending up with bit-flip errors on both qubits. Similarly, a phase error on the
target qubit will be transferred, after application of CNOT gate, to the control qubit.

Figure 2.19: Error propagation of Controlled-Not gate

Similarly, the bit-flip error on the control qubit will result in a bit-flip error on the
target qubit and a phase error on the control qubit after the CZ operation. Further-
more, a bit-flip error on the target qubit will result in a bit-flip error on the target
qubit and a phase error on the control qubit.

Figure 2.20: Error propagation of Controlled-Z gate

The measurement outcome depends on the quantum state, and thus a measurement
error leads to a errory feedforward operation. Therefore measurement errors in MBQC
also propagates to other qubits through byproduct operations.

X

Faulty measurement 

Figure 2.21: Error propagation of measurement
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2.13 Stabilizer

A quantum state may be described by a state vector or a density matrix. An alternative
way to represent a pure state is to use a set of stabilizers. A stabilizer S of a state |ψ⟩
is:

S |ψ⟩ = |ψ⟩ (2.72)

Consequently, a stabilizer or a set of stabilizers uniquely determines a quantum
state. Below are examples of stabilizers for different states:

Z |0⟩ = |0⟩ −Z |1⟩ = |1⟩ (2.73)

X |+⟩ = |+⟩ −X |−⟩ = |−⟩ (2.74)

Y |+⟩ = |+i⟩ −Y |−⟩ = |−i⟩ (2.75)

Stabilizers for entangled states are:

Table 2.4: Different entangled states and the corresponding stabilizer sets

Quantum state Stabilizer sets
1√
2
(|0102⟩+ |1112⟩) X1X2, Z1Z2

1√
2
(|0102⟩ − |1112⟩) −X1X2, Z1Z2

1√
2
(|0112⟩+ |1102⟩) X1X2,−Z1Z2

1√
2
(|0112⟩ − |1102⟩) −X1X2,−Z1Z2

1√
2
(|010203⟩+ |010203⟩) X1X2X3, Z1Z2, Z2Z3

1√
2
(|01+2⟩ − |11−2⟩) X1Z2, Z1X2

1
2
(|0102+3⟩+ |0112−3⟩+ |1112+3⟩ |1112−3⟩+) X1Z2, Z1X2Z3, Z2X3

So |ψ⟩ is the eigenvector of all stabilizers inset. A quantum state with n qubits can
be fully described by n stabilizers. Stabilizers can be helpful when describing a state
consisting of many qubits, as the number of stabilizers grows only linearly while other
methods grow exponentially. On the other hand, finding the correct stabilizer set that
corresponds to a particular complex quantum state is difficult. Moreover, stabilizers
can be only used to represent states manipulated with Clifford group operations.

2.14 Quantum Repeater Network

A quantum repeater network is a system consisting of quantum repeaters, which are
composed of undirected classical channels, quantum channels and memory qubits, as
shown below in Figure 2.22. The main role of a quantum repeater is to extend the
communication range by managing errors, creating entanglement between neighboring
nodes, enabling multi-hop communications.
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Figure 2.22: Architecture of a simple quantum repeater network

2.15 Measurement-based Quantum Computation (MBQC)

Measurement-based Quantum Computation (MBQC) is an alternative universal com-
putation method based on single qubit measurements that was proposed by Raussendorf,
Browne and Briegel in 2003 [17] - also known as one-way quantum computing. Unlike
the circuit model, the scheme of MBQC generally requires a two dimensional grid of
qubits that are initialized as |+⟩ and entangled with all neighboring qubits using CZ
gates, as a cluster state (see Figure 2.23). The initialized cluster state for MBQC is
also called the resource state.

Encoding  procedure	


|+i
qubits 

CZ 

Figure 2.23: 2D resource state generation

The technique to map an unknown quantum state from one qubit to another is
known as one-bit teleportation (see Figure 2.24) - introduced by Zhou, Leung and
Chuang in 2000 [18].

|+i
|�i

1 X
1 Z 

|�i
H

H

1 
2 

Figure 2.24: Quantum circuit for one-bit teleportation

The calculation using state-vector form is:
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H1Λ1,2(Z) |ϕ1⟩ |+2⟩ = H1Λ1,2(Z)α |0⟩+ β |1⟩ ⊗ |+2⟩
= H1α |01+2⟩+ β |11−2⟩
= α |+1+2⟩+ β |−1−2⟩

(2.76)

After the measurement operations, the residual state ends up in either output state
in Table 2.5.

Table 2.5: Byproduct operation to complete one-bit teleportation

Measurement result Output state Byproduct operation

01 α |+⟩+ β |−⟩ (H2)I
11 α |+⟩ − β |−⟩ (H2)X2

The X gate in this case behaves like a Z gate on |0⟩ , |1⟩ basis. The Hadamard gate
is used to convert the state |+⟩ to |0⟩ and |−⟩ to |1⟩.

Inserting a RZ(θ) operation to the one-bit teleportation circuit can simply be ac-
complished by adding the gate just before the CZ gate (shown Figure 2.25(a)). As
RZ(θ) |ϕ⟩ can be considered as state |ϕ′⟩, the circuit can be directly related to the
circuit in Figure 2.24. However, as rotations across Z-axis commute with the CZ op-
eration, the circuit can be rewritten as Figure 2.25(b). The set of operations on qubit
1 after the CZ gate can be considered as a single measurement operator in a partic-
ular basis, and the overall protocol can be simplified to a collection of CZ gates and
measurement operations. Finally, the computation depends on the measurement basis,
which specifies the θ.

|+i
|�i

1 X
1 Z H

H

1 

2 

Rz(✓)

|�0i

|�0i

|+i
|�i

1 X
1 Z H

H

1 

2 

Rz(✓)

Rz(✓) |�i

(a) 

(b) 

Figure 2.25: One-bit teleportation to Measurement-based Quantum Computing

An arbitrary single qubit unitary operation U can be decomposed into Euler angles:

U = HeiθZeiϕXeiξZ = HeiθZHeiϕZHeiξZ (2.77)

as an X gate can also be described by two Hadamard gates and a Z gate X = HZH.
Therefore, an arbitrary single qubit unitary operation can be represented by a sequence
of one-bit teleportations.
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1 2 3 4 
⇠ �✓

Figure 2.26: Measurement-based single qubit unitary operation

The realization of the CNOT operation can be accomplished by a 2-dimensional
seqence of measurements as shown in Figure 2.27 below. Z-basis measurements are
performed beforehand to omit unwanted qubits from the graph.

Control�

Target�

X Y

Z Z Z Z Z Z

X XX X X

Y Y Y Y

Y

Y

Figure 2.27: Measurement-based CNOT operation

Performing Pauli basis measurements transforms the graph states. Considering a
1D cluster state, the Z-basis measurement removes the measured qubit and disconnects
the links, leaving two separate cluster states, or two independent qubits with a state |1⟩
respectively (see Figure 2.28(a)). The Y-basis measurement also removes the measured
qubit but directly connects the neighbors up to the phase operations as a byproduct (see
Figure 2.28(b)). Unlike the other Pauli basis measurements, the X-basis measurement
transforms the linear graph into a non-linear graph. One X gate as an byproduct,
and an additional Hadamard gate needs to be applied to a neighboring qubit of the
measured target. While the target qubit of the byproduct X gate does not affect the
overall state but fixes the phase, the target qubit of the Hadamard gate directly affects
the graph as in Figure 2.28(c).

Z

1 2 3 1 3 

(a) 

(b) Y S S

X

1 2 3 1 3 

(c) 
1 2 3 H H1 

3 

3 

1 

Figure 2.28: Topological transition by measurements on 1D cluster states

Similar to the 1D graph, performing measurements on a 2D cluster states affect the
graph in a 2-dimensional manner. The Z-basis measurement performed on an arbitrary
qubit will simply result in a new topology without the measured qubit and its links
as in Figure 2.29(a). The Y-basis measurement also removes the measured qubit but
leaves additional complementary links between the neighbors of the measured qubit
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(Figure 2.29(b)). The output topology after X-basis measurement differs according
to the feedforward target, which is a neighbor qubit of the measurement target (filled
with gray color in 2.29(c)). After the measurement, new complementary links are
formed between the neighbors of the feedforward targeted qubit and the neighbors of
the measured qubit, between the mutual neighbors of the feedforward targeted and the
measured qubit, and between the feedforward targeted qubit and the neighbors of the
measured qubit. Similar to other measurements, the measured qubit is removed and
its links will be disconnected from other qubits.

Encoding  procedure	
Encoding  procedure	


X

Encoding  procedure	


Z Y

Feedforward  target  qubit�

(b) Y measurement (a) Z measurement (c) X measurement 

Figure 2.29: Topological transition by measurements on 2D cluster states
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Chapter 3

Current State of Experimental
Work

3.1 Satellite-based entanglement distribution over

1200 kilometers

Recently, in 2017, China achieved the longest ever entanglement distribution using their
quantum satellite, Micius, which was designed to produce two separate photons with
entangled polarizations as |Ψ+⟩ = 1√

2
(|01⟩ + |10⟩) [19]. Pairs of photons are beamed

down to earth under a pump power of 30 mW, with a rate of 5.9 million entangled
pair second with a fidelity of 0.907 ±0.007, and measured at ground stations separated
by 1203km. Overall the experiment succeeded in distributing 1.1 entanglement per
second in average across over 1203km distance with a fidelity 0.869 ± 0.085.

Earth 

1200km 

Micius 
(500km altitude) 

Entangled photons 

Figure 3.1: Chinese satellite beaming down entangled photons to earth
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3.2 Photon pair experiment and the violation of

CHSH inequality

One of the Bell inequalities, known as CHSH inequality, allows us to mathematically
prove that quantum mechanics cannot be explained by local hidden variables theory.
In a classical Newtonian physics, the correlations between outcomes of measurements
on distant particles must satisfy an inequality | S |< 2 (S is the correlation between
measurement outcomes). Since quantum mechanics do not obey locality and realism,
the same experiment on entangled particles violates the inequality and result in a
different boundary 2

√
2 ≈ 2.82843 - known as Tsirelson ’s bound.

In 2015, Poh et al. experimented the correlation of maximally entangled photon
polarization, and observed S = 2.82759 ± 0.00051, which is very close to Tsirelson’s
bound S − 2

√
2 = 0.00084± 0.00051 [20].

In the same year, Hensen et al succeeded in demonstrating a loophole-free Bell
inequality violation using electron spins separated by 1.3km [21] - previously reported
experiment results required extra assumptions which caused in loopholes [22, 23, 24, 25].
Using entangled electron spins of an estimated fidelity F = 0.92 ± 0.03, 245 trials of
direct CHSH-Bell inequality test have been performed, and observed S = 2.42± 0.20.

3.3 Experimental generation of cluster states

In 2013, Lanyon et al. demonstrated principles of MBQC using deterministically gen-
erated cluster states of up to 7 qubits using trapped calcium ions [26]. For testing
single-qubit measurements, a linear cluster state of 4 qubits have been generated using
a laser pulse sequence lasting 300µs. The full density matrix had been reconstructed
via quantum state tomography, and the observed fidelity is 0.841±0.006. In the ex-
periment, a range of measurement combination has been implemented to implement
different rotations. The fidelity after the measurements is 0.92±0.01 in average. More-
over, 5 different cluster states up to 7 qubits has been tested, which includes the linear
cluster state and other simple 2D graphs, and all of the states violated the Bell inequal-
ity, which implies that no local hidden variable model can explain the experimental
result.

In 2013, Yokoyama et al. succeeded in deterministically generating a large scale
continuous-variable cluster state by multiplexing the light modes in the time domain.
The generated cluster state contains more than 10,000 entangled modes, each of them
individually addressable [27]. They have also developed an efficient MBQC scheme
based on sequential applications of quantum teleportation for the generated cluster
state in particular.

In 2016, Schwartz et al. implemented a scheme for deterministic generation of long
strings of entangled photons in a cluster state [28]. A photonic cluster state is consid-
ered to be suitable for quantum computing, as the use of photon polarization as a qubit
facilitates high fidelity single qubit measurements. The demonstration follows Lindner
and Rudolph’s proposal [29], where in this case an dark exciton spin is entangled with
the photon polarization that is emitted by its own excitation. The timed re-excitation
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emits more photons, leading to a string of 1D cluster state. The prototype succeeded
in producing strings of a few hundred photons in which entanglement persists over 5
sequential photons.
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Chapter 4

Related Work

4.1 Classical Network Coding

Classical network coding, introduced by Ahlswede, Cai, Li, and Yeung [1], is a notably
simple, yet important technique for resolving resource contention over networks. A
node in a computer network generally behaves as a switch, responsible for relaying
a received packet to one or more neighboring nodes by replicating the information.
However, scarce network resources result in packet congestion, and may significantly
affect applications that rely on the connectivity. In order to mitigate this issue, network
coding treats each node in a network as an encoder instead of a switch.

The simplest example of network coding can be represented on a butterfly network
as shown in Figure 4.1. In this example, there are two source nodes S1 and S2 with
the goal delivering messages X and Y to their target nodes t2 and t1 respectively.
Here, each message is assumed to be 1 bit of data, and all directed channels have a
limited capacity of 1 bit per second. With a general routing protocol, no matter what
path is chosen for each connection, the two paths must overlap somewhere, resulting
in contention for access to one link.

X 2 {0, 1} Y 2 {0, 1}
S1 S2

t2t1

r1

r2

Figure 4.1: Resource contention over Butterfly network

Therefore, the link between the intermediate resource nodes r1 and r2 becomes a
bottleneck. One possible solution for such problem may be the use of time division
multiplexing, which uses two cycles to complete the message transmission. One mes-
sage transmission can be finished first, and the second transmission can be completed
afterwards, which may result in long delays.
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On the other hand, network coding can resolve this bottleneck problem within
one cycle by linearly combining the incoming messages and transmitting them as one
message (see Figure 4.2). Source node S1 sends its message towards the target node t1
and to the resource node r1. Similarly, source node S2 forwards its message towards
the target node t2 and the resource node r1. The resource node r1 then processes
the incoming messages, using XOR operation to linearly combine the messages, and
forwards the newly created message to both target nodes via r2. At the end, each node
can reconstruct their desired message by decoding the linearly combined message, using
XOR operation between the other message directly sent from the source node to the
target node. Therefore, network coding can achieve a throughput of two messages per
second.

Figure 4.2: Network coding on a butterfly network

Network coding may be useful in multicast, wireless sensor networks, satellite com-
munication and Peer-to-Peer file sharing.

4.2 Multiplexing using Entanglement Swapping

Alternative implementation methods, such as Buffer-Space Multiplexing and Time-
Division Multiplexing, are often used for comparing performance between network
coding.

4.2.1 Buffer-Space Multiplexing

If the bottleneck link has enough resources, the buffer-space multiplexing divides the
available qubit memory space and assigns part of it to each flow. This allows multiple
links to be established simultaneously within once cycle, if resource is abundant. The
simplified model is shown in Figure 4.3

31



1)  5  Bell  pairs�
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Encoding  procedure	


Figure 4.3: Simplified model of buffer-space multiplexing using entanglement swapping.
The resource in the center link must be used shared.

4.2.2 Time-Division Multiplexing

The time-Division Multiplexing in quantum networking can be accomplished by en-
tanglement swapping. For a pictorial model of ES, see Figure 4.4.

In this model, qubit 3 and qubit 4 at the bottleneck link will be shared among
nodes for completing the whole transmission process. The bottleneck link will be used
to complete one transmission first, and then will be regenerated to finish up the second
transmission. It is almost the same as Buffer-Space Multiplexing, but two cycles are
needed in order to complete the whole process.
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Figure 4.4: Simplified model of time-division multiplexing using entanglement swap-
ping. The center link must be used twice.

4.3 Quantum Network Coding

Quantum network coding also aims to send multiple messages (quantum information)
from multiple sources to multiple destinations simultaneously. Unlike classical infor-
mation, quantum information forbids copying an unknown quantum state - no-cloning
theorem. Therefore, although the goal still remains the same for classical and quantum
network coding, the physical approach for accomplishing the goal differs from each
other.

In 2006, Hayashi et al. showed that the communication fidelity is upper bounded
by Foutput < 0.983, when simultaneously transmitting messages (quantum information)
over a butterfly network via quantum network coding without free classical channels
[30]. Furthermore, in 2007, Leung et al. generalized this impossibility to several
network types including the butterfly network, and concluded that perfect quantum
network coding is impossible even with asymptotically perfect transmission [31]. Later
on, Kobayashi et al. showed that perfect quantum network coding can be accomplished
whenever free classical channels are available, for any graph shape that is solvable by
classical network coding [32, 33, 34]. All work assumed that qubits have pure states.
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4.3.1 Quantum Network Coding for Repeater networks

In 2012, Satoh et al. developed a more simplified quantum network coding protocol
for quantum repeater networks (QNC) [4]. Previously introduced quantum network
coding protocols [30, 31, 32, 33, 34, 35] directly encode on the message qubits, how-
ever, QNC avoids any operation to the message qubits in the middle of the protocol.
Performing complex gate operations directly to the message qubits degrades the qubit
state, and performing purification to the message after a complex encoding may not be
easy. Instead, QNC focuses on creating 2 crossing-over paths by using the Bell pairs
shared across quantum repeaters with a goal to lowering the protocol complexity and
to improve the communication fidelity.

As shown in the QNC encoding procedure in Figure 4.5 and the corresponding
circuit in Figure 4.6, the network is assumed to have 7 Bell pairs shaping a butterfly
graph - Classical channels are assumed to be undirected and have unlimited capacity.
A six-step procedure takes us from the seven separate Bell pairs to two end-to-end Bell
pairs via QNC.

|Ψ0⟩ =
∣∣Φ+

0,1

⟩ ∣∣Φ+
2,3

⟩ ∣∣Φ+
4,5

⟩ ∣∣Φ+
6,7

⟩ ∣∣Φ+
8,9

⟩ ∣∣Φ+
10,11

⟩ ∣∣Φ+
12,13

⟩
(4.1)

Using the given resources, the first step of the protocol connects a particular set of
Bell pairs to generate two 3-qubit GHZ states.

[Step1(Connection)]
∣∣Φ+

0,1

⟩ ∣∣Φ+
2,3

⟩ ∣∣Φ+
4,5

⟩ ∣∣Φ+
6,7

⟩
= |GHZ0,1,3⟩ |GHZ4,5,7⟩ (4.2)

Therefore, the overall system after Step 1 can be described as:

|Ψ1⟩ = |GHZ0,1,3⟩ |GHZ4,5,7⟩
∣∣Φ+

8,9

⟩ ∣∣Φ+
10,11

⟩ ∣∣Φ+
12,13

⟩
(4.3)

The bottleneck link is manipulated to bridge the GHZ states to the left and right
as a parity qubit as in Step 2.

|Ψ2⟩ =
1

2
(|000103040507⟩+ |101113141517⟩) |0⟩9 ⊗

∣∣Φ+
10,11

⟩ ∣∣Φ+
12,13

⟩
+

1

2
(|000103141517⟩+ |000103141517⟩) |1⟩9 ⊗

∣∣Φ+
10,11

⟩ ∣∣Φ+
12,13

⟩ (4.4)

In Step 3, FANOUT operation is applied to the parity qubit, which is qubit 9.

|Ψ3⟩ =
1

2
(|000103040507⟩+ |101113141517⟩) |000⟩9,11,13

+
1

2
(|000103141517⟩+ |000103141517⟩) |111⟩9,11,13

(4.5)

In Step 4, CNOT operation will be applied to qubits at both target nodes.

|Ψ4⟩ =
1

2
(|000103040507⟩+ |101113141517⟩) |000⟩9,11,13

+
1

2
(|001103140517⟩+ |100113041507⟩) |111⟩9,11,13

(4.6)
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In Step 5, parity qubits at both target nodes are removed from the graph by mea-
surement.

|Ψ5⟩ =
1

2
(|000103040507⟩+ |101113141517⟩) |0⟩9

+
1

2
(|001103140517⟩+ |100113041507⟩) |1⟩9

(4.7)

The parity qubit at the bottleneck link is removed in Step 6.

|Ψ6⟩ =
1

2
(|000103040507⟩+ |101113141517⟩)

+
1

2
(|001103140517⟩+ |100113041507⟩)

(4.8)

In the last step, the remaining qubits at the bottleneck node is removed from the
graph to form 2 crossing-over Bell pairs.

|Ψ6⟩ =
1

2
(|00010405⟩+ |10111415⟩)

+
1

2
(|00111405⟩+ |10010415⟩)

=
∣∣Φ+

0,5

⟩
⊗
∣∣Φ+

1,4

⟩ (4.9)

This completes the sequence and results in two end-to-end Bell pairs, which can be
used to teleport the message qubit from source to destination directly.
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Figure 4.6: Quantum circuit of QNC

Later in 2016, Satoh et al. studied QNC under noisy conditions using Monte-Carlo
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simulation. The paper concluded that ES tolerates about twice the local error rate
of QNC. Each operation in QNC is ordered in time, therefore, qubit dependencies
worsen the quantum circuit depth. Due to the high circuit complexity, local operation
accuracies tend to have a larger impact on the output fidelity compared to initial
entangled resource fidelity. Moreover, even with perfect local gates, the output fidelity
drops below Foutput < 0.5 when the initial Bell pairs have fidelity Finput < 0.90. While
ES offers higher communication fidelity, QNC reduces the required cycle, and therefore
provide benefit if network resources are limited or if higher communication speed is
demanded.

4.3.2 MBQC

Performing X-measurements on the bottleneck qubits of a butterfly cluster state will
result in 2 crossing-over cluster states [36]. For a simplified model of this scheme, see
Figure 4.7. Although this algorithm seems to be a lot simpler compared to QNC, one
should be reminded that creating a cluster state requires interfering of all qubits that
are involved, thus, it is not feasible to directly create a multi-qubit cluster state using
qubits that are far apart.

Node�
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Qubit�

X  measurement�

Encoding  procedure	


1)  1  Cluster  state�
※6  qubits�
�

2)  2  crossing-‐‑‒over  cluster  states�
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5 1 

Figure 4.7: Visualized encoding procedure of network coding on cluster state

In the next chapter, this thesis introduces a step-by-step procedure of the newly
developed protocol, which is based on QNC and MBQC. With a similar initial setting to
QNC, the developed protocol manipulates the shared resources to form a 6-qubit cluster
state through local operations, and perform X-basis measurements to the bottleneck
link.
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Chapter 5

Protocol Design

5.1 MQNC Protocol

QNC is practical as it can be implemented over quantum repeater networks and used
for long distance communications. Nevertheless, the encoding procedure is based on
the classical counterpart which results in many qubit dependencies, lengthening the
circuit depth, and therefore adversely affecting the communication fidelity. While the
benefit of MBQC comes from the simplicity of implementation, the scheme for MBQC
can only be directly applied to a system area network. The main reason for this comes
from the difficulty of creating a multi-qubit cluster state using qubits that are far apart,
as cluster state generation requires interfering of all qubits that are involved.

The proposed protocol, MQNC, takes advantage of both QNC and MBQC using
local operations and classical communication (LOCC) and the Bell pairs created on
repeater network links. Unlike the other network coding schemes for quantum com-
munication that directly encode on qubits to combine messages (based on the classical
algorithm), and QNC that uses CNOT operations (which is the quantum equivalent of
XOR) to create parities on quantum channels (also based on classical network coding),
MQNC focuses on generating 2 crossing-over paths, which partially takes the idea of
QNC but without a single use of CNOT gates (not based on classical network coding).
The basic idea of MQNC is to create a 6-qubit butterfly cluster state from the 7 shared
entangled pairs, and to treat the generated state as a resource state for network level
MBQC, which allows us to topologically achieve the same goal as QNC. The developed
protocol’s simplified model is shown in Figure 5.1. Entangled states across nodes are
assumed to be ready, and therefore the link-timing architecture [37, 38] for entangle-
ment distributions has not been taken into consideration in this thesis. As shown, the
encoding procedure for MQNC can be divided into 3 major steps. The first step is the
initialization part, where entangled resources between quantum repeaters are prepared.
The second step is the creation of the butterfly-shaped 6-qubit cluster state using only
LOCC and the given resources prepared in the first step. The last step completes the
measurement-based quantum network coding by creating 2 crossing-over independent
cluster states out of the butterfly graph.
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Figure 5.1: Flow of MQNC encoding

5.1.1 1st Step: Initialization of Shared Resources

The first step of the protocol requires a preparation of seven independent 2-qubit
cluster states across quantum repeaters. A 2-qubit cluster state can be generated by
the following circuit as in Figure 5.2(a) with a simplified model of the input and output
visualization shown in Figure 5.2(b). Notice that a cluster state can be generated from
a Bell pair by applying an additional Hadamard gate to qubit 2. However, from the
relation between the CZ gate and the Controlled-NOT gate ( for details, refer to Figure
2.11), a cluster state can be created effectively by applying Hadamard gates to both
qubits beforehand. Most importantly, the generation of a Bell pair and a 2-qubit
cluster state requires the same cost in terms of circuit depth (experimental methods
are introduced in Chapter 4). All seven cluster states are prepared with the same
procedure independently.

1)  Qubits� 2)  Cluster  state�

2	


1	


2	


1	


1 

2 
1)  Input� 2)  Output�

(a) Quantum circuit (b) Simplified model 
Bell  pair�

Figure 5.2: 2-qubit cluster state generation (a) Quantum circuit of 2-qubit cluster state
generation (b) Simplified model of 2-qubit cluseter state generation

The output of the above circuit can be calculated using Dirac notation:
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Λ1,2(Z)H2H1 |0102⟩

= Λ1,2(Z)H2
1√
2
(|0102⟩+ |1102⟩)

= Λ1,2(Z)
1

2
(|0102⟩+ |1102⟩+ |0112⟩+ |1112⟩)

=
1

2
(|0102⟩+ |1102⟩+ |0112⟩ − |1112⟩)

=
1√
2
(|01+2⟩+ |11−2⟩) (5.1)

As shown in equation 5.2, the circuit outputs a cluster state, entangling two qubits.
The circuit output can also be tracked by using stabilizers. Each qubit has a state |0⟩,
where the overall initial state can be described by stabilizers Z1 and Z2. The Hadamard
gate then swaps the |0⟩ state and |+⟩ state. Therefore, applying Hadamard gates to
each qubit and performing a CZ gate between them will result in new stabilizers X1Z2

and Z1X2. The flow of stabilizers on the quantum circuit is described in Figure 5.3.

Z 

Z 

X 

X 

X 

Z 

X 

Z 

Figure 5.3: Stabilizer flow of 2-qubit cluster state generation circuit

5.1.2 2nd Step: Creating 6-qubit cluster state

Adding another qubit to a pre-generated cluster state can be accomplished by imple-
menting another CZ gate between the qubits, as in Figure 5.4. Here, qubit 3 is added
to another pre-generated 2-qubit cluster state of qubit 1 and qubit2, resulting in a
linearly entangled cluster state of all three qubits.

Λ2,3(Z)H3 |03⟩
1√
2
(|01+2⟩+ |11−2⟩)

= Λ2,3(Z)
1√
2
(|0102+3⟩+ |11 −2 +3⟩)

=
1

2
(|0102+3⟩+ |0112−3⟩+ |1112+3⟩+ |1112−3⟩) (5.2)

Besides just a single qubit, but an independent cluster state can also be connected
to another cluster state through the same procedure. Removing a qubit from a graph
is sometimes helpful. The excision of an intermediate qubit of a linearly entangled
cluster state can be accomplished by the use of Y-basis measurement with two classical
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Figure 5.4: 3-qubit linear cluster state generation (a) Quantum circuit of linear 3-qubit
cluster state generation (b) Simplified model of linear 3-qubit cluseter state generation

Table 5.1: Stabilizers after the Y measurement

qubits

Stabilizer 1 X1 Z2

Stabilizer 2 Z1 Y2 −1t3

Stabilizer 3 Z2 −1t3 Y4

feedforward operations. The stabilizers of the system after measuring qubit 3 are
described in Table 5.1.

The variable t3 is the measurement outcome, either 0 or 1, of qubit 3. Depending on
the measurement result, two phase operations are performed to the neighboring qubits
of the measured target. Unlike other byproduct operators that shows up in this thesis,
a Y measurement on a cluster state always requires the phase of residual system to be
corrected, by either S gate or S† gate depending on the measurement result.

In this example, qubit 3 is measured with respect to the Y-basis, and the graph is
directly connected up to the phase operations to qubit 2 and qubit 4 as a byproduct.
For details regarding the topological transition, see to Figure 5.5.

A star graph known as K1,3, also known as the claw graph, is a subgraph of a
butterfly network. The simplest claw cluster state composed of 4 qubits can also be
created with similar procedure as shown in Figure 5.6. CZ gate is performed between
qubit 2 and qubit 3, which is the intermediate qubit of the linear 3-qubit cluster state,
and qubit 5 which is the edge of a 2-qubit cluster state. Afterwards, qubit 5 is removed
from the graph using Y-basis measurement.

With all the introduced techniques above, 6-qubit butterfly cluster state can be
generated using the seven initialized entangled resources. For simplicity, the second
step of MQNC is divided into further sub-steps as in Figure 5.7. The corresponding
circuit is shown in Figure 5.8.

In Step 1, which is the initialization part of the protocol, seven independent cluster
states are generated using the fourteen qubit resources across quantum repeaters. Each
cluster state is generated using the technique in Figure 5.2. Step 2.1 uses the initialized
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Figure 5.5: Y measurement performed on linear cluster state. (a) Quantum circuit of
linear 3-qubit cluster state generation using Y measurement. (b) Simplified model of
linear 3-qubit ccluseter state generation using Y measurement.
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Figure 5.6: 4-qubit star-shaped cluster state (a) Quantum circuit of 4-qubit star-shaped
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generation
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Figure 5.7: MQNC step2

resources to linearly connect qubits as in Figure 5.5, resulting in three 3-qubit linear
cluster state and one 2-qubit cluster state. In the next step, Step 2.2, qubits at the
bottle neck node are connected together, shaping a non-linear cluster state to bind the
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Figure 5.8: MQNC step2 circuit

neighboring nodes - using the technique shown in Figure 5.6. At last, the remaining
two qubits at the left-top (qubit 0 and qubit 11) and right-top (qubit 13 and qubit 4)
are entangled and the unwanted qubits are removed from the graph to shape a proper
butterfly network.

5.1.3 3rd Step: Creating 2 crossing-over cluster states

Once a butterfly cluster state (see Figure 4.7) is prepared, the next thing to do is to
create 2 crossing-over cluster states. This can be accomplished by applying X-basis
measurements on the bottleneck qubits (qubit 8 and qubit 9). As there are 6 qubits
involved in the system, 6 stabilizers are required to represent the butterfly cluster state.
Details are shown below in Table 5.2. After the X measurements on qubit 8 and qubit
9, stabilizers change to the following set as in Table 5.3.

Table 5.2: Stabilizers of a butterfly cluster state : pre-measurement

qubits

Stabilizer 1 X0 Z1 Z9

Stabilizer 2 Z0 X1 Z8

Stabilizer 3 Z1 X8 Z9 Z5

Stabilizer 4 Z0 Z8 X9 Z4

Stabilizer 5 Z9 X4 Z5

Stabilizer 6 Z8 Z4 X5

This implies that up to the measurement result, the phase of the quantum state
may change. In order to fix the phase to a desired state, either Z gates or X gates
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Table 5.3: Stabilizers of 2 crossing-over cluster states : post-measurement

qubits

Stabilizer 1 X0 −1t8 Z5

Stabilizer 2 X1 −1t9 Z4

Stabilizer 3 Z1 −1t8 X4

Stabilizer 4 Z0 −1t9 X5

can be used. When using Z gates, two Z gates are applied to qubit 0 and qubit 4 as a
byproduct of qubit 8 measurement. Similarly, two Z gates are applied to qubit 1 and
qubit 5 as a byproduct of measurement on qubit 9. Alternatively, one can achieve the
same goal by performing X gates to qubit 0 and qubit 4 as a byproduct of measuring
qubit 9, and to qubit 1 and qubit 5 as a byproduct of measuring qubit 8. In this thesis,
MQNC assumes to perform X gates as byproduct operators since it requires less time
due to shorter distance for classical packet transmission. A simple full quantum circuit
of MQNC is as shown below in Figure 5.9.
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Figure 5.9: Simple circuit of MQNC

5.1.4 Compressing Quantum Circuit of MQNC

Measurement operations, Phase gates and CZ gates commute. Therefore, the order
of applying such operations can be changed. In detail, measuring a particular qubit
of a cluster state and connecting the resulting state to another cluster state using CZ
gate equates to connecting the two cluster states beforehand and measuring the qubit
later. Taking full advantage of this gate commutativity allows us to parallelize some
encoding operations, which contributes to reducing the circuit depth.
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Instead of strictly following the procedure of the above circuit in Figure 5.9, as
operations do not depend on each other, all CZ gate operations can be applied in a
parallel manner at the beginning of the protocol, and measuring qubits can be done
afterwards. The compressed circuit for MQNC is now as shown in Figure 5.11 with
a simiple representation as in Figure 5.10. In the end, MQNC has achieved a 52%
reduction of circuit depth compared to QNC.
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Figure 5.10: Compressed circuit of MQNC
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Chapter 6

Evaluation

The behavior of the proposed protocol has been studied through Monte-Carlo simu-
lation by tracking error propagations classically with various error sources. Results
of the simulations are compared statistically with other alternative implementation
methods, which includes buffer-space multiplexing using entanglement swapping (ES)
and Quantum Network Coding for Repeater Networks (QNC) (for details, see Related
Work).

The program that has been used in this thesis is an extended version of Doctor
Shota Nagayama’s code that has been originally developed for his Doctoral thesis in
2016 [39]. The total length of the program files differs according to the simulation
settings, but for MQNC in particular, approximately 3100 lines of code have been
used.

6.1 Environment

The development environment is summarized in Table 6.1.

Table 6.1: Development environment

Operating system OSX Yosemite 10.10.4
Processor 2 GHz Intel Core i7
Memory 8GB
Launage Python 3.6.1

The developed program had been run in a different environment with a higher
computation power as summarized in Table 6.2. Each simulation lasted for 1 to 2
hours.
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Table 6.2: Simulation environment

Operating system CentOS 6.9
Processor 3.50 GHz Intel Core i7
Memory 32GB
Launage Python 3.6.1

6.2 Common simulation settings

Operations in the same category (e.g. single-qubit gates) are assumed to share the
exact same error rate. That is to say, if one H gate has an error rate of ε, all other
single-qubit gates also share the same error rate. Noisy operations in the simulation
include:

1. Single qubit gates

(a) Z gate

(b) X gate

(c) H gate

(d) S gate

2. Controlled gates

(a) CZ gate

(b) CNOT gate

3. Measurements

(a) Z measurement

(b) X measurement

(c) Y measurement

4. Qubit memories

(a) I gate

5. Initial resource

(a) Qubit initialization

(b) Bell pair initialization

(c) 2-qubit cluster state initialization
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The first two error sources are the gate errors, which include the single-qubit gate
error and the controlled gate error. The third error source is the error caused by
faulty qubit measurement. An error on the measured qubit may also cause a faulty
measurement result, which propagates to other qubits through misleading byproduct
operations. The fourth error is the memory error, which simulates the decoherence on
qubits that interferes and affects the qubit state; as a qubit memory is not supposed to
anything to the state, it is often described as the identity gate. The last error source is
the initial resource error, which determines whether the state of a qubit or an entangled
resource across quantum repeaters, such as a Bell pair, is defective or not.

For each step in the circuit, only one operation is assumed to be performable to
the same qubit. Consequentially, for two different controlled gates with two different
target qubits, if they share the same control qubit, a total of 2 depth at minimum is
required to finish both operations. Also, the physical distance between each node is not
taken into consideration in the simulation. Thus, each node is assumed to be capable
of perfectly delivering the classical feedforward message to the destination node within
one circuit depth.

In this thesis, for simplicity, the term input fidelity refers to initial resource fidelity
and output fidelity refers to the joint fidelity of the resulting two crossing-over entangled
pairs at the end of each protocol.

Here, fidelity F = 1 − p = ⟨ψ|ρ|ψ⟩, where p is the error rate and |ψ⟩ is the ideal
pure state. As explained in section 2.12, errors propagate through circuits. The output
fidelity is calculated by Foutput = 1− p′, where p′ is the probability of at least one error
present on either entangled output at the end of the protocol. For each datapoint of
short quantum circuit simulations, section 6.3.1 and 6.3.2, the simulation either stops
if 100 thousand residual errors have been accumulated or if 100 million trials have
been performed. For section 6.3.3, due to computation power restrictions, a maximum
of 20 thousand residual errors have been accumulated or 1 million trials have been
performed.

6.3 Simulation results and evaluation

6.3.1 Initial resource generation

Before moving on to the full circuit evaluation, we first focus on a simpler circuit that
consists of two qubits aimed for generating an initial resource. In QNC and ES, quan-
tum repeaters are assumed to be sharing Bell pairs ( 1√

2
(|00⟩+ |11⟩)) as communication

resources. On the other hand, MQNC requires cluster states ( 1√
2
(|0+⟩ + |1−⟩)) to be

shared as the protocol works based on measurement-based quantum computing. As
mentioned before in section 5.1.1, circuits for generating a 2-qubit cluster state and
a Bell pair can be implemented in a similar way using a CNOT gate, but it is more
natural to assume that the 2-qubit cluster state generation is done through a CZ gate
operation as it is more efficient in terms of the circuit depth. For convenience, each
quantum circuit is reintroduced in Figure 6.1.
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Figure 6.1: Quantum circuit for generating initial resources (a) Quantum circuit for
Bell pair generation (b) Quantum circuit for 2 qubit cluster state generation

Errors on initial resources

Qubits are commonly prepared with the state |0⟩ before starting the actual computa-
tion. The state |0⟩ is not in a superposition state, and is therefore measurable with
respect to the Z-basis without disturbing the state. If the measurement result of an
initialized qubit turns out to be |1⟩ instead of |0⟩, one can simply apply an X gate
operation to flip the quantum state to |0⟩. However, in some cases, a qubit might not
be prepared in the desired state due to an erroneous measurement or an erroneous X
gate operation - giving |1⟩ due to a bit-flip (X) error on the qubit. For simplicity, the
phase error is assumed to be nonexistent.

Error type Probability
I |0⟩ 1− p
X |0⟩ p

The first simulation studies the impact of initial qubit resource fidelity on the output
fidelity for circuits introduced in Figure 6.1. For this particular problem set, the relation
between the input fidelity and the output fidelity can be analytically calculated. For a
Bell pair generation, the qubit state branches into 4 patterns with or without errors,
which includes I0I1, I0X1, X0I1 and X0X1. For details regarding the relation between
the input state and the output state, see Table 6.3 and Table 6.4. The stabilizers of a
Bell pair are X0X1 and Z0Z1, and X0Z1 and Z0X1 stabilize a 2-qubit cluster state.

Table 6.3: Bell pair circuit error propagation of input error and the correlated output
state. |ψinit⟩ = |0201⟩ and |ψout⟩ = 1√

2
(|00⟩+ |11⟩)

Input state Output state Error

I0I1 |ψinit⟩ I0I1 |ψout⟩ No
I0X1 |ψinit⟩ I0X1 |ψout⟩ Yes
X0I1 |ψinit⟩ Z0I1 |ψout⟩ Yes
X0X1 |ψinit⟩ Z0X1 |ψout⟩ Yes
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Table 6.4: Cluster state circuit error propagation of input error and the correlated
output state. |ψinit⟩ = |0201⟩ and |ψout⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩ − |11⟩)

Input state Output state Error
I0I1 |ψinit⟩ I0I1 |ψout⟩ No
I0X1 |ψinit⟩ I0Z1 |ψout⟩ Yes
X0I1 |ψinit⟩ Z0I1 |ψout⟩ Yes
X0X1 |ψinit⟩ Z0Z1 |ψout⟩ Yes

For both circuits, only 1 pattern out of 4 outputs a noiseless entangled pair. It
is not too hard to find out that with an average of 50% of input fidelity, the output
fidelity is 0.52 = 0.25%, as the probability of both having no error (II) is the joint
fidelity of both qubits. To generalize, with the input fidelity of F , the output fidelity
is F 2. The analytical result agreed with the simulated results. All results are shown
below at Figure 6.2.
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Figure 6.2: Impact of input fidelity to output fidelity in initial shared resource gener-
ation

As discussed, both circuits share the same error tolerance against initial resources.
However, considering the difference in controlled operations and the extra single-qubit
gate that is required for the cluster state generation, the physical cost of each method
is still questionable but cannot be discussed in the simulation. In order to obtain a
minimum fidelity of 50%, the input fidelity must be greater than 71%.

Fixed initial resource fidelity and variable error rate on local operation

Next, we hold the input qubit fidelity at Finput = 0.98, and vary the local operation
accuracy from Foperation = 50% to Foperation = 99% using ∆Foperation = 1%. Here, the
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term local operation refers to qubit memories and gate operations. Each error, X, Y
and Z, share the same weighted probability. Possible error patterns for a single-qubit
operation and a two-qubit operation are listed below in Table 6.5.

Table 6.5: Possible types of errors caused by gate operations. (a) Error model of single-
qubit gates where |ψ0⟩ is a quantum state and p = gate error rate. (b) Error model of
two-qubit gates where |ψ0,1⟩ is a composite quantum state and p = gate error rate.

(a) Single-qubit gate

Error type Probability
I |ψ0⟩ 1− p
X |ψ0⟩ p/3
Y |ψ0⟩ p/3
Z |ψ0⟩ p/3

(b) Two-qubit gate

Error type Probability
I0I1 |ψ0,1⟩ 1− p
I0X1 |ψ0,1⟩ p/15
I0Y1 |ψ0,1⟩ p/15
I0Z1 |ψ0,1⟩ p/15
X0I1 |ψ0,1⟩ p/15
X0X1 |ψ0,1⟩ p/15
X0Y1 |ψ0,1⟩ p/15
X0Z1 |ψ0,1⟩ p/15
Y0I1 |ψ0,1⟩ p/15
Y0X1 |ψ0,1⟩ p/15
Y0Y1 |ψ0,1⟩ p/15
Y0Z1 |ψ0,1⟩ p/15
Z0I1 |ψ0,1⟩ p/15
Z0X1 |ψ0,1⟩ p/15
Z0Y1 |ψ0,1⟩ p/15
Z0Z1 |ψ0,1⟩ p/15

As shown, after a single-qubit operation, the output branches into 4 different states.
Similarly, there are 16 different possible output states after a two-qubit operation. The
simulation results are shown in Figure 6.3.
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Figure 6.3: Impact of local operation accuracy to output fidelity in initial shared
resource generation. Input fidelity is fixed to Finput = 0.98%.

The Bell pair circuit and the 2-qubit cluster state circuit have the error tolerance.
In order to acquire a minimum fidelity of Foutput = 50%, both resource generation
requires at least 70% local gate accuracy.

6.3.2 Linear 3-qubit entanglement generation

Next, two quantum circuits that operates on 3 qubits as in Figure 6.4 are introduced.
Each circuit consumes two initialized entangled states and creates a linearly entangled
3-qubit entangled state - 1 qubit is measured in the process of encoding. Subscripts
of gates denote the operation identifier, which is there to help readers identify which
measurement is connected to which byproduct operation.

(a) (b) 

Z Y 

1)  Initial  resource� 2)  GHZ  state� 1)  Initial  resource� 2)  3-‐‑‒qubit  cluster  state�

Figure 6.4: Quantum circuit for generating linear 3-qubit entanglement (a) Quantum
circuit for GHZ state generation (b) Quantum circuit for 3 qubit cluster state genera-
tion.
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Errors on initial resources

In real networking, entangled pairs are repeatedly generated between quantum re-
peaters [40]. Therefore, from this section, shared resources are assumed to be prepared
beforehand independent from the protocol. The first two columns of the circuits are
excluded from the simulation and the term input fidelity is redefined to the average fi-
delity of the previously shared initial resources. The types of errors that may be present
on each resource is summarized in Table 6.6 - some errors do not appear because they
stabilize the state.

Table 6.6: Possible types of errors on initial resources. (a) Error model of Bell pairs
where |ψ0,1⟩ is a Bell pair and p = initial resource error rate. (b) Error model of cluster
states where |ψ0,1⟩ is a cluster state and p = initial resource error rate.

(a) Bell pair

Error type Probability
I0I1 |ψ0,1⟩ 1− p
I0X1 |ψ0,1⟩ p/12
I0Y1 |ψ0,1⟩ p/12
I0Z1 |ψ0,1⟩ p/12
X0I1 |ψ0,1⟩ p/12
X0X1 |ψ0,1⟩ 0
X0Y1 |ψ0,1⟩ p/12
X0Z1 |ψ0,1⟩ p/12
Y0I1 |ψ0,1⟩ p/12
Y0X1 |ψ0,1⟩ p/12
Y0Y1 |ψ0,1⟩ 0
Y0Z1 |ψ0,1⟩ p/12
Z0I1 |ψ0,1⟩ p/12
Z0X1 |ψ0,1⟩ p/12
Z0Y1 |ψ0,1⟩ p/12
Z0Z1 |ψ0,1⟩ 0

(b) Cluster state

Error type Probability
I0I1 |ψ0,1⟩ 1− p
I0X1 |ψ0,1⟩ p/12
I0Y1 |ψ0,1⟩ p/12
I0Z1 |ψ0,1⟩ p/12
X0I1 |ψ0,1⟩ p/12
X0X1 |ψ0,1⟩ p/12
X0Y1 |ψ0,1⟩ p/12
X0Z1 |ψ0,1⟩ 0
Y0I1 |ψ0,1⟩ p/12
Y0X1 |ψ0,1⟩ p/12
Y0Y1 |ψ0,1⟩ 0
Y0Z1 |ψ0,1⟩ p/12
Z0I1 |ψ0,1⟩ p/12
Z0X1 |ψ0,1⟩ 0
Z0Y1 |ψ0,1⟩ p/12
Z0Z1 |ψ0,1⟩ p/12

The simulation result for assessing the impact of input fidelity on the output fidelity
is shown in Figure 6.5. The cluster state circuit starts off with better input error tol-
erance, however, the difference becomes indistinguishable as input fidelity gets higher.
The difference in output fidelity gets less than 1% if Finput ≥ 73%. To retain a mini-
mum output fidelity of Foutput = 50%, GHZ circuit requires a fidelity of Finput ≥ 71%
and Finput ≥ 70% for cluster state circuit.
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Figure 6.5: Impact of input fidelity on output fidelity in linear 3-qubit entanglement
generation

Fixed initial resource fidelity and variable error rate on local operation

Shared resources across quantum repeaters are commonly purified periodically to im-
prove its fidelity. Therefore, it is more likely to consider that those shared resources
have high enough fidelities. The input fidelity is held as a constant Finput = 98%
and local gate accuracy is changed from Foperation = 50% to Foperation = 100% using
∆Foperation = 1%. The simulation result with this settings is shown in Figure 6.6. Both
circuits’ output fidelity becomes greater than 50% when Foperation ≥ 93%. From that
point, cluster state generation has slightly better error tolerance than GHZ generation
by approximately 0.7% when Foperation = 100%.
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Figure 6.6: Impact of local gate accuracy on output fidelity in linear 3-qubit entangle-
ment generation. Input fidelity is fixed to Finput = 0.98%.

6.3.3 Full MQNC circuit

As mentioned at the begining of the chapter, alternative methods are evaluated using
the same procedure and compared statistically in order to assess the performance of
the proposed protocol. The first alternative method is the prior quantum network
coding (QNC) technique introduced as in Related work in section 4. To be clear, QNC
does not use MBQC to complete the network coding task but instead uses CNOT gate
operations and measurements to imitate the procedure of the classical network coding
by creating parities in stead of XOR operations. Operations required for this protocol
needs to be applied one by one going through the proper procedure, which creates a
significant amount of dependencies between qubit operations. The quantum circuit for
QNC is shown below at Figure 6.7(a).

Buffer-space multiplexing using entanglement swapping (ES) is not related to net-
work coding but is one of the easiest ways to resolve the bottleneck problem. This
thesis will consider the simplest encoding procedure of entanglement swapping in order
to make the comparison consistent over results in related work. The details of the
quantum circuit for ES can be seen in Figure 6.7(b).

Compared to QNC, MQNC does not follow the traditional network coding proce-
dure, but focuses on creating two crossing-over cluster states topologically by exploiting
MBQC. The evaluated quantum circuit for MQNC is shown below at Figure 6.7(c).
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Figure 6.7: Evaluated quantum circuits. (a) Quantum circuit for Quantum Network
Coding over Repeater Networks.(b) Quantum circuit for Buffer-space Multiplexing
using Entanglement Swapping. (c) Quantum circuit for Measurement Based Quantum
Network Coding over Repeater Networks.

Among all protocols, MQNC has the shortest circuit depth. Other statistical char-
acteristics of each protocol are summarized in Table 6.8.

Errors on initial resources

Before simulating the entire circuit with all error sources affecting the result, we first
simulate the propagation of errors present in the initial resources but without local gate
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Table 6.7: Characteristics of Protocols

MQNC QNC ES

Number of qubits 14 14 12
Number of entangling operations 7 7 6

Number of single-qubit gates (byproduct operators) 20(20) 16(11) 12(8)
Number of two-qubit gates 8 8 4
Number of measurements 10 10 4

Circuit depth 11 23 12
KQ (Circuit depth × number of qubits) 154 322 144

errors in order to assess the tolerance and efficacy of initial fidelity to output fidelity
in all three protocols. In this section, three scenarios have been simulated by changing
the input fidelity from Finput = 50% to Finput = 99% using ∆Finput = 1%.

The first scenario is the Z errors present on the initially shared entangled pairs
of qubits. For simplicity, errors are assumed to only exist on the qubits that are
labeled with odd numbers, after the initialization, as in Figure 6.7. As an example,
the initial entangled resource of qubit 0 and qubit 1 may have a state of (I0⊕Z1) |ψ0,1⟩
with probability Perror = p, or (I0 ⊕ I1) |ψ0,1⟩ with probability Pclean = 1 − p. The
simulation result is shown below at Figure 6.8.

0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

0.5	
   0.55	
   0.6	
   0.65	
   0.7	
   0.75	
   0.8	
   0.85	
   0.9	
   0.95	
   1	
  

O
ut
pu

t	
  fi
de

lit
y	
  

Input	
  fidelity	
  

ES	
  

QNC	
  

MQNC	
  

Figure 6.8: Impact of input fidelity on output fidelity in three protocols. Probabilistic
Z error on qubits labeled with odd numbers.

Overall, ES has the highest initial resource Z error tolerance among the protocols.
Although ES and QNC have similar results with lower fidelity, the difference in ES
and QNC output fidelity | F qnc

output − F es
output |≤ 1% when Finput ≤ 33%. On the other
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hand, MQNC starts with the lowest output fidelity but shares the same behavior as
QNC with higher fidelity. The main reason for this is because the Z error on a Bell
pair |Φ+⟩ only changes its state to |Φ−⟩, which are two patterns in total. With a 50%
chance of having a Z error on Bell pair, the joint fidelity drops to 1/22 = 25%. On
the other hand, a Z error on a 2-qubit cluster state stochastically changes the state to
1
2
|00⟩ + |01⟩ − |10⟩ + |11⟩ with a ZI error, 1

2
|00⟩ − |01⟩ + |10⟩ + |11⟩ with a IZ error,

and 1
2
|00⟩ − |01⟩ − |10⟩ + |11⟩ with a ZZ error. That is a total of 4 patterns, which

the joint fidelity drops to 1/42 = 6.25%. The difference in MQNC and QNC output
fidelity | Fmqnc

output − F qnc
output |≤ 1% when Finput ≥ 96%.

The second scenario is similar to the first scenario but with X errors present on the
initially shared entangled pairs of qubits labeled with odd numbers. The simulation
result is shown in Figure 6.9.
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Figure 6.9: Impact of input fidelity on output fidelity in three protocols. Probabilistic
X error on qubits labeled with odd numbers.

The error tolerance for QNC and ES does not change for Z errors and X errors.
To the contrary, MQNC has slightly better error tolerance to X errors than Z errors.
Similar to the case with only Z error, the Z error changes the Bell pair state |Φ+⟩
to |Ψ+⟩, which has only 2 patterns. Therefore, with a 50% probability of X error
on each Bell pair, both of them combined results in a joint fidelity of 1/(22) = 25%.
To the contrary, the 2-qubit cluster state have 4 patterns with or without X errors -
1
2
|00⟩ + |01⟩ + |10⟩ − |11⟩, 1

2
|10⟩ + |11⟩ + |00⟩ − |01⟩, 1

2
|00⟩ + |01⟩ − |10⟩ + |11⟩ and

1
2
|10⟩+ |11⟩ − |00⟩+ |01⟩. Therefore, with a 50% error rate, the joint fidelity drops to

1/42 = 6.25%. The difference in MQNC and QNC output fidelity | Fmqnc
output − F qnc

output |≤
1% when Finput ≥ 95%.

In the last scenario, not only Z or X errors but any other errors can exist on any
initial resources. Errors on entangled resources have the same weighted probability
(for details, refer to Table 6.6).
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As shown in Figure 6.10, MQNC and ES have similar initial error tolerance, and
QNC is slightly left behind. In order to retain an output fidelity of Foutput = 50%, QNC
and MQNC require an input fidelity of at least Finput = 89%, while QNC requires an
extra 2% in order to achieve the same goal.
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Figure 6.10: Impact of input fidelity on output fidelity in three protocols. Probabilistic
errors on all qubits.

Fixed initial resource fidelity and variable error rate on local operation

Finally, all error sources, such as qubit memories and measurements, are assumed to
be actively generating errors. A single-qubit operation may emit one error out of 3
possibilities, X, Y and Z error, with equal probability. Similarly, after a two-qubit
operation, there is no error, or at least one X, Y or Z error is present on either qubit.
Initial fidelity is fixed to Finput = 98% and other error rates are changed concurrently
from Foperation = 98% to Foperation = 100% with ∆Foperation = 0.05%. The simulation
result is shown in Figure 6.11.
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Figure 6.11: Impact of local operation accuracy to output fidelity in three protocols.
Input fidelity is fixed to Finput = 98%.

The average output fidelity is calculated by:

Average output fidelity =

∑n−1
i=0 (f(0.98 + i∆x))

n
(6.1)

where f(x) is the function representing the correlation between the local operation
accuracy and the output fidelity in each protocol, ∆x is the interval of data points
∆x = 0.0005 and n is the number of data points n = 41.

In order to find the approximate area under each curve, Average Riemann Sum has
been used:

Average Riemann Sum = ∆x ∗
n∑

i=1

(
f(0.98 + i∆x) + f(0.98 + (i− 1)∆x)

2
) (6.2)

The average slope is calculated by:

Average slope =

∑n
i=1

f(0.98+i∆x)−f(0.98+(i−1)∆x)
∆x

n
(6.3)
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Table 6.8: Characteristics of Protocols

MQNC QNC ES

Average output fidelity 0.52896 0.29273 0.49880
Maximum output fidelity 0.88481 0.86767 0.88668
Minimum output fidelity 0.29334 0.09314 0.26683

Total area (Average Riemann Sum) 0.01055 0.00576 0.00994
Average slope 29.57325 38.72645 30.99265
Maximum slope 51.70000 138.15600 61.434
Minimum slope 14.00600 0.83400 12.49600

As shown, with the simulation model of all error sources, MQNC has the highest
output fidelity yet the gentlest slope in average. Although the maximum output fidelity
of each protocol converges to a similar point, the area under the curve of MQNC
and QNC is approximately twice of QNC’s, which also means that MQNC and QNC
tolerates about twice the local error rate of QNC. Moreover, QNC has the lowest and
highest rate of change, which indicates that the output fidelity of QNC significantly
depends on the local error rate.

As each protocol has its own circuit characteristics, the errors that appear on the
entangled output differs. The details of the error distribution on entangled outputs for
each protocol when Finput = 98% and Foperation = 98% is shown in Figure 6.12. Per-
centage differences of error types for each protocol are summarized in Table 6.9, Table
6.10, and Table 6.11 accordingly. Errors such as I0X1 and X0I1 are physically indis-
tinguishable, therefore, the X-axis and Y-axis for each distribution graph is invertible.
Percentage difference is calculated by:

Percentage difference =
| Error Rateoutput1 − Error Rateoutput2 |

Error Rateoutput1+Error Rateoutput2
2

× 100 (6.4)
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Figure 6.12: Error distribution of one entangled outputs. (a1) Error distribution of
cluster state formed by qubit 1 and qubit 6 in MQNC. (a2) Error distribution of
cluster state formed by qubit 2 and qubit 5 in MQNC. (b1) Error distribution of Bell
pair formed by qubit 1 and qubit 6 in QNC. (b2) Error distribution of Bell pair formed
by qubit 2 and qubit 5 in QNC. (c1) Error distribution of Bell pair formed by qubit
1 and qubit 6 in ES. (c2) Error distribution of Bell pair formed by qubit 7 and qubit
12 in ES. Distribution at input fidelity Finput = 98% and local operation accuracy
Foperation = 98%.
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Table 6.9: Percentage difference of error distributions in MQNC

I X Y Z
I 1.7632% 5.8223% 5.1735% 8.7474%
X 1.9754% 7.1141% - -
Y 1.4899% - - -
Z 14.7581% - - 8.9239%

Table 6.10: Percentage difference of error distributions in ES

I X Y Z
I 0.4133% 0.4139% 0.1693% 0.8165%
X 0.2670% - - 10.2625%
Y 6.9219% - - -
Z 3.5205% 17.7370% - -

Table 6.11: Percentage difference of error distributions in QNC

I X Y Z
I 1.8680% 0.5139% 1.2623% 3.2999%
X 2.7710% - - 1.0754%
Y 5.9812% - - -
Z 0.7895% 2.4242% - -

The highest percentage difference obtained is 17.7% in ES, however, the error dis-
tribution is mostly symmetrical over 2 outputs for all protocols. Most interestingly,
the output joint fidelity of MQNC when Finput = 98% and Foperation = 98% is higher
than that of ES, even though entangled outputs of ES separately retain higher output
fidelity. As a hypothesis, this is caused by the two byproduct operators for each mea-
surement in MQNC, which synchronizes propagation of errors throughout the circuit -
multiple errors occur or cancel out simultaneously.

The change in error distribution over the change in local operation accuracy is
plotted in Figure 6.13.
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H

Table 6.12: Slope change of error rate by type. This reflects the sensitivity to each
type of error.

IX IY IZ XI XX YI ZI ZZ
Ave. slope -507.31 -234.57 -192.69 -519.74 -125.90 -308.26 -330.32 -41.54
Max. slope 996.03 487.98 301.90 936.68 248.39 637.15 599.52 110.54
Min. slope 103.08 20.96 7.35 102.88 11.96 20.42 114.18 3.39
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Figure 6.13: Error distribution versus local operation accuracy in MQNC. Input fidelity
is fixed to Finput = 98%.

As seen, MQNC mostly suffers from IX and XI error in all situations - a bit-flip
error on either qubit. As a matter of fact, those errors combined covers approximated
one fourth of the total probability. On the other side, with a fixed initial resource
error of Finput = 98%, the probability of ZZ and XX error drops gradually to P (ZZ) ≈
0.04% and P (XX) ≈ 0.36% as local operation accuracy approaches to 1. As those
error rate converges to a certain point, not much benefit can be obtained from further
improvement of local operation accuracy, when the local operation accuracy is high
enough. The error rate for ZZ error drops by 0.002% by an improvement of local
operation accuracy Foperation = 99.995% to Foperation = 100%. While the slope of ZZ
error and XX error gets flatter, other error types’ probabilities drop more aggressively
as the local operation accuracy approaches to 1. As a matter of fact, IX error rate
decreases by 0.5% when local operation accuracy is improved from Foperation = 99.995%
to Foperation = 100%.

Fixed initial resource fidelity, perfect memory and erroneous local operation

Lastly, qubit memories are assumed to be ideal, and therefore, qubits that are waiting
for other process do not get affected by noise. Other error variables including gates
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and measurements stay as the independent variable with a domain of Foperation = 98%
to Foperation = 100% with a constant initial resource fidelity of Finput = 98%. The
simulation results are shown in Figure 6.14 with a summarized statistics in Table 6.13.
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Figure 6.14: Impact of local operation accuracy to output fidelity in three protocols.
Memory error rate is fixed to Fmemory = 100%. Input fidelity is fixed to Finput = 98%.

Table 6.13: Characteristics of Protocols with perfect memory

MQNC QNC ES

Average output fidelity 0.77744 0.74353 0.79843
Maximum output fidelity 0.88347 0.87000 0.88695
Minimum output fidelity 0.67892 0.63391 0.71714

Total area (Average Riemann Sum) 0.00039 0.00037 0.00040
Average slope 10.22735 11.8022 8.49065
Maximum slope 12.80200 16.43000 11.66600
Minimum slope 7.04600 6.69400 4.83600

Unlike the simulation results with the total error model, ES obtains a higher mini-
mum, maximum and average output fidelity compared to MQNC and QNC. All three
protocols have linear correlations between the output fidelity and the accuracy of local
operation, and end up with similar output fidelity as the local operation accuracy ap-
proaches to 1. While ES obtains a higher error tolerance with better qubit memories, in
all three protocols, memory imperfection is the dominant error and is the main causes
of faulty communication.
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Chapter 7

Conclusion

Using Monte-Carlo simulation, this thesis discussed the simulated error propagation of
3 different protocols, MQNC, QNC and ES on a butterfly network.

MQNC is more sensitive to Z errors, and has no practical advantage over ES in
terms of initial error tolerance. On the other hand, unlike QNC and ES, the correlation
between the input and output fidelity differs from Z errors to X errors, as only X errors
propagate through CZ gates. In the asymptotic limit with the artificial model of only
a single error type, MQNC fares worse than either QNC and ES because both X and
Z errors develop in the final 2-qubit cluster states. In general, however, the proposed
protocol showed a substantial improvement of overall error tolerance compared to QNC,
and is even slightly better than ES with the total error model.

Although ES still seems to be a better option with the accessibility to high perfor-
mance qubit memories, one should be reminded that Buffer-Space Multiplexing requires
an extra link at the bottleneck to complete the whole process in one cycle. If the net-
work does not have extra qubits for bottleneck link, using Time-Division Multiplexing
(TDM) may be another option. However, as TDM requires more waiting time com-
pared to ES, the communication fidelity drops even more. As a conclusion, MQNC is
more practical than QNC, but the choice of MQNC or ES still depends on the situation
and the network topology. If resources for networking are abundant, ES may be more
useful. In contrast, MQNC is more practical if resource contention is critical and needs
to be resolved.

Future work
The butterfly network and the grail network are the two fundamental primitive net-

works with the feasibility of transmitting two symbols simultaneously from different
sources to destinations via network coding [41]. This thesis does not discuss the feasi-
bility of quantum network coding over a grail network. Furthermore, quantum circuits
in general do not include any information regarding the distances between each node,
and therefore has not been simulated. Simulation results for each protocol may differ
significantly by taking into consideration the fact that qubits degrade while waiting for
the classical feedforward operation. In the end, the simulation results that has been
introduced in the thesis do not include any purification to resources. While applying
purification to resources in ES is feasible, the difficulty in performing purifications to
resources in MQNC and QNC is still questionable.
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and William K. Wootters. Teleporting an unknown quantum state via dual clas-
sical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–1899, Mar
1993.

68



[11] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter,
and Zeilinger Anton. Experimental quantum teleportation. Philosophical Trans-
actions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 356(1743):1733–1737, 1998.

[12] A. Furusawa, J. L. S￥orensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and
E. S. Polzik. Unconditional quantum teleportation. Science, 282(5389):706–709,
1998.

[13] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum repeaters: The role of
imperfect local operations in quantum communication. Phys. Rev. Lett., 81:5932–
5935, Dec 1998.

[14] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on
entanglement purification. Phys. Rev. A, 59:169–181, Jan 1999.

[15] Richard Jozsa. Fidelity for mixed quantum states. Journal of Modern Optics, vol.
41, Issue 12, p.2315-2323, 1994.

[16] M. A. Horne M. Zukowski, A. Zeilinger and A. K. Ekert. Event-ready-detectors
bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4298, 1993.

[17] Daniel E. Browne Robert Raussendorf and Hans.J. Briegel. Measurement-based
quantum computation with cluster states. Phys. Rev. A, Vol. 68, 2003.

[18] Xinlan Zhou, Debbie W. Leung, and Isaac L. Chuang. Methodology for quantum
logic gate constructions. Phys. Rev. A, 62,052316, 2000.

[19] Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang Ren,
Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, Guang-Bing Li, Qi-Ming Lu, Yun-
Hong Gong, Yu Xu, Shuang-Lin Li, Feng-Zhi Li, Ya-Yun Yin, Zi-Qing Jiang, Ming
Li, Jian-Jun Jia, Ge Ren, Dong He, Yi-Lin Zhou, Xiao-Xiang Zhang, Na Wang,
Xiang Chang, Zhen-Cai Zhu, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Rong Shu,
Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan. Satellite-based entanglement
distribution over 1200 kilometers. Science, Vol.356, Issue 6343, pp. 1140-114, 2017.

[20] Hou Shun Poh, Siddarth K. Joshi, Alessandro Cerè, Adán Cabello, and Christian
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