
Crosstalk-aware NISQ
Multi-programming

Yasuhiro Ohkura

A thesis presented for the degree of
Bachelor of Policy Management

Faculty of Policy Management
Keio University

Abstract

Current quantum processors are known as Noisy Intermediate-Scale Quantum (NISQ)
devices and are greatly susceptible to noise. In particular, gate errors that accumu-
late every operation and the qubit lifetime are known to be major sources of noise,
that limit the scale of reliable quantum computation. On the other hand, the state
of the art quantum processor consists of up to tens of qubits, and some of them
are available via cloud services. As a result, the number of underutilized resources
increases due to the excess number of qubits over the size of the problem that can
be solved reliably, which limits the throughput of the NISQ computation. Paral-
lel execution of small-scale circuits may improve the operating efficiency of NISQ
processors, but still challenging because the impact of errors on individual tasks is
non-trivial. In particular, the crosstalk that is known as the non-local error in the
quantum chip can cause unwanted interference between independent circuits in a
simultaneous execution set, and it may lead to limit the performance of parallel
execution. In this paper, we propose a novel compilation method to mitigate the
impact of crosstalk during concurrent execution of multiple circuits and to realize
highly reliable quantum computation. We use IBM Q System 27-qubit processor
to characterize the crosstalk noise and to evaluate the performance of our proposal.
This method provides more efficient and highly reliable quantum computation by
effectively allocating multiple quantum circuits to the processor, taking into account
unwanted remote interference caused by crosstalk. Our work improves the through-
put of the NISQ processor and achieves high-speed processing of small tasks. This
would be attractive not only to quantum providers but also to users around the world
who want to run the small-scale NISQ algorithms that have recently attracted great
focus and are being enthusiastically investigated.

Contents

1 Introduction 3

2 Background 5
2.1 Principles of Quantum Computation 5
2.2 Noisy Intermediate-Scale Quantum Computing 5

2.2.1 Errors in NISQ . 7
2.3 Quantum Circuit . 7

2.3.1 Compilation task . 8
2.4 Cloud Quantum Computing Services 9
2.5 Crosstalk in NISQ processor . 9

2.5.1 The cost of noise characterization 9
2.5.2 Noise mitigation approach . 9

2.6 Quantum Multi-programming . 10

3 Error Detection Methodology 11
3.1 Crosstalk Noise . 11

3.1.1 Experimental setup . 11
3.1.2 Characterization Crosstalk Noise 12
3.1.3 Reducing detection overhead strategy 15

3.2 Measurement Waiting Duration . 17
3.2.1 Experimental setup . 17
3.2.2 Impact of measurement waiting duration 17

4 Proposed Algorithms 20
4.1 Qubit allocation policy . 20

4.1.1 High cost circuit first allocation 20
4.1.2 Crosstalk aware qubit allocation 21

4.2 Scheduling multi-programming instruction policy 22

1

5 Experiments and Evaluation 23
5.1 Setup . 23
5.2 Crosstalk adaptive layout . 24

5.2.1 Results . 24
5.3 Modifying Measurement Waiting Duration 29

5.3.1 Evaluation with benchmark circuits 29

6 Conclusion and Remarks 34

2

Chapter 1

Introduction

Quantum computing aims to effective information processing on specific problems by
utilizing the properties of quantum mechanics, such as superposition and entangle-
ment in computer technology. It is, in particular, expected to be applied in the fields
of chemistry, finance, and machine learning. On the contrary, the current quantum
processor what is called Noisy Intermediate-Scale Quantum (NISQ) [1], is not im-
mune to the noise which causes a high error rate and greatly affects the reliability of
the computation.

With the advent of the cloud quantum computing system [2], [3], quantum com-
puting has become familiar to researchers and developers around the world. The
more number of users and tasks from various demands and backgrounds has in-
creased, the more it is important that the throughput of NISQ processor. To operate
this efficiently, executing multiple quantum tasks concurrently can be one solution
however this method is not trivial and involves essential challenges [4], [5].

It is difficult to explain whole errors of computation on NISQ processor by us-
ing information from standard error characterization techniques such as quantum
tomography and randomized benchmarking [6], [7]. To maximize the utilization and
performance of NISQ processor, we should take into account not only the standard
one also context-dependent errors [8].

In the case of superconducting qubit systems, crosstalk has the biggest effect on
the gate errors [9], [10]. When multiple quantum circuits are executed in parallel,
as resource usage of the processor increases, unwanted interference may occur due
to crosstalk noise between independent quantum circuits, which may affect the cal-
culation results [4], [5]. In this research, we propose a novel compilation method
for mitigating crosstalk noise that assumes parallel execution of multiple quantum
circuits.

3

This thesis includes the following contributions. First, we visualize how the im-
pact of crosstalk distributed in the real device potentially limits the performance
of computation and the efficient way of the noise characterization method in prac-
tice. Second, we propose a novel qubit allocation method for the quantum multi-
programming case that is considering crosstalk characterization in the hardware to
improve output fidelity. Third, we propose a scheduling method for the simultaneous
execution of multi circuits.

Our work consists of the following. At first, we have attempted to clarify the
problem and motivation of this study referring to previous works (Ch.2). As the main
contribution of this thesis, first, we characterize and analyze the crosstalk noise and
coherent data that are potentially limiting the performance of multi-programming
(Ch.3). Second, we propose a novel qubit allocation method considering crosstalk
characterization in the hardware and scheduling method cares about the difference
of duration of each independent circuit executed concurrently to improve output
fidelity, and show the performance of our proposal (Ch.4, 5).

4

Chapter 2

Background

2.1 Principles of Quantum Computation
The unit of the quantum computer is called a quantum bit, i.e. qubit described as
state vector |0⟩ and |1⟩. Qubit has the capability of taking superposition state as
α |0⟩ + β |1⟩ against the classical counter part only have 0 and 1 state. Here α, β
are complex numbers that satisfy the |α|2 + |β|2 = 1. In quantum computing, we
can utilize special correlations between qubits called entanglement that particular
to quantum physics. In general, quantum algorithms are executed as follows. 1).
Initialize a qubit state as superposition. 2). Apply quantum operations to qubits. In
the quantum circuit model (Sec. 2.3), those operations are implemented combination
of quantum gates Table 2.1 in time steps. 3). Finally, by applying measurement
operation, we can extract the final state as a classical probability distribution of bit
strings.

2.2 Noisy Intermediate-Scale Quantum Comput-
ing

The performance of current leading quantum architectures called Noisy Intermediate-
Scale Quantum (NISQ) is limited due to the noise [1]. The providers are continuously
building better NISQ processors both in size and error tolerance[12], [13]. Neverthe-
less, qubits are affected by noise that causes serious errors in the calculation due
to the reasons such as gate operation, measurement operation, and environmental
interference. With Quantum Error Correction (QEC) technique, the promised quan-
tum algorithms including Shor’s algorithm [14], Grover’s algorithm [15] provide the

5

Quantum Gate Circuit diagram Matrix representation Truth table
Input Output

Identity gate Id Id =

(
1 0
0 1

)
|0⟩ |0⟩
|1⟩ |1⟩

X gate X X =

(
0 1
1 0

)
|0⟩ |1⟩
|1⟩ |0⟩

Y gate Y Y =

(
0 −i
i 0

)
|0⟩ i |1⟩
|1⟩ −i |0⟩

Z gate Z Z =

(
1 0
0 −1

)
|0⟩ |0⟩
|1⟩ − |1⟩

S gate S S =

(
1 0
0 ei

π
2

)
|0⟩ |0⟩
|1⟩ ei

π
2 |1⟩

T gate T S =

(
1 0
0 ei

π
4

)
|0⟩ |0⟩
|1⟩ ei

π
4 |1⟩

H gate H H = 1√
2

(
1 1
1 −1

) |0⟩ |0⟩+|1⟩√
2

|1⟩ |0⟩−|1⟩√
2

Control-NOT gate CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |0⟩

Table 2.1: Quantum Gate examples [11].

6

quantum advantage against classical counterparts. However, QEC requires physical
qubits overhead [16], [17]. It is quite hard to succeed in the NISQ era. Instead, to
achieve the quantum advantage earlier, near-term Quantum Computation [18] aims
to develop the software and algorithms for the quantum hardware available in the
next few years without QEC including Variational Quantum Algorithms [19], [20],
[21], Variational Quantum Eigensolver [22], [23], Quantum Approximate Optimiza-
tion Algorithm [24], Approximated post-NISQ algorithm [25]. In this thesis, we focus
on software development for efficient usage of the NISQ processor.

2.2.1 Errors in NISQ
In physically, the NISQ processors are implemented as an open quantum system. The
qubits interact with their environments, and this noise arises as a quantum error that
makes a quantum state fragile [11]. Though there are several reasons to cause the
errors, we introduce operational errors and the decoherence caused by qubit lifetime
here in part. Due to the limited precision of the quantum operation implemented in
a real architecture, every time we perform quantum gates or measurements to the
qubits, the quantum state becomes different from ideal with a certain probability,
and errors accumulate in time steps. We call these gate errors and readout errors. In
the IBM Q System, for instance, two-qubit (CNOT gate) error rates are around 10x
bigger than one-qubit gate error rates. Another source of decoherence comes from
qubit lifetime. Qubit coherence time represented as T1, T2 and its related metric T2∗
[26]. T1 explains thermal relaxation time or amplitude damping that is decaying of
quantum states from the excited state (higher energy state, |1⟩) to the ground state
(lower energy, |0⟩) along with energy loss. T2 and T2∗ explain phase damping that
is decaying of stable phase information.

2.3 Quantum Circuit
Quantum circuit is the model of quantum computation, that is composed of the
quantum register(s) and classical register(s) described as line(s), series of the quan-
tum gate(s) as box(es), and measurement operation described as meter connected to
classical register(s) Fig. 2.1. Every quantum gate is defined as the unitary operation
that means the quantum operation is reversible. On the contrary, the measurement
of qubit(s) is a destructive and irreversible operation. It collapses the quantum state
and converts it to classical (on/off) form. In this process, though a lot of information
represented in quantum space is destroyed, we can observe what it was probabilisti-
cally. To understand the final product of the series of quantum gate operations by

7

measurement, we conduct thousands of trials and produce a result as a probability
distribution of bit-strings in a real system.

q0

q1

q2

|ψ⟩

|0⟩

|0⟩

H

H

Z X

Quantum
Registers

State initialization

Quantum Gates

Measurement

Classical Control

Classical
Registers

Figure 2.1: Example of Quantum Circuit: Quantum Teleportatin [27].

2.3.1 Compilation task
To realize logical quantum computation described as a quantum circuit on the real-
world physical system, it should be compiled to a proper form that satisfying logical
and physical constraints. It is known that the quantum circuit consists of only a
few elements include state preparation, Hadamard gates, phase gates, CNOT gates,
Pauli gates, measurement, and classically conditioned control gates by Gottesman-
Knill theorem [28]. In the case of current leading quantum architectures, its own
universal quantum gate set is implemented to realize arbitrary quantum circuit op-
erations corresponding to the theorem. The compiler translates the program circuit
written by the user to this gate set. This is called logic synthesis [29]. To satisfy
the physical constraints of the quantum processor, program qubits are allocated to
the physical system and gate operations are routed and scheduled considering the
hardware topology. In the case of the NISQ processor, because of the noise and
fragile quantum states, optimization of this circuit compilation process has a serious
impact on the reliability of the output. The layout of the program qubits to hard-
ware is related to the reduction of SWAP operation in the routing process. SWAP
operation is implemented three CNOT gates and this 2-qubit gates are major source
of noise in the current system showed in Sec. 2.2.1. Previous works showed practical
optimization techniques for allocation [30], [31], [29], routing [32], [33] for the NISQ
system.

8

2.4 Cloud Quantum Computing Services
With the advent of cloud quantum computing services [34], [35], [36], [2], [37], [38],
[39] , so many researchers and developers from a variety of domains are becoming
quantum users. Cloud quantum computing provides great opportunities for con-
ducting basic experiments to developing applications include quantum simulation,
quantum machine learning, solving the optimization problem [40]. With the rapid
increase in users, urgent accesses for limited cloud quantum resources and a number
of queued jobs are becoming serious issues.

2.5 Crosstalk in NISQ processor
Crosstalk error is known as a significant source of noise in the quantum processor.
This error can be explained from several aspects, but simply the unwanted interaction
between coupled qubits in the processor. It is known there is a trade-off between
the strength of qubits interaction and magnitude of unwanted crosstalk noise [41],
[42]. And one type of crosstalk is caused by simultaneous operations between specific
couples of qubits. In this thesis, we focused on the unwanted interaction due to the
2-qubits (CNOT gate) operation. These types of crosstalk are known to occur in
the current quantum architectures include the superconducting systems and trapped
ion [43], [44].

2.5.1 The cost of noise characterization
The complexity of noise characterization often expands exponential scaling with the
system size. Recently, several works show efficient ways to detect crosstalk noise [45].
Even so, it takes several hours for characterization, and it is an impractical recent
situation, that is NISQ and cloud quantum computing era. Rather than that, we
adapted a simpler protocol, simultaneous randomized benchmarking [41] and limited
detection range that is introduced in Sec 3.1 to reduce characterization cost.

2.5.2 Noise mitigation approach
The tuning and mitigation of crosstalk directly become big challenges as develop-
ing larger processors [42], [8], [45]. There are several software approaches to reduce
crosstalk error introduced in previous work. In the case of tunable quantum pro-
cessors include Google’s architecture[46], tune qubit frequencies or control specific
couplers to disable and shutdown the leakage errors [9], [47]. On the contrary, for

9

fixed qubit systems include IBM Q System, by using optimized circuit scheduler to
avoid concurrent execution of correlated qubits in the processor [48]. In this the-
sis, we focused on this fixed qubit system, and provide the solution by novel layout
method in the circuit compilation process.

2.6 Quantum Multi-programming
The quantum multi-programming is the method to improve the throughput and
utilization of the NISQ processor by executing multiple quantum circuits simulta-
neously, instead of keeping the unemployed qubits resource idle. In the previous
work, several challenges were discussed as follows [4], [5]: 1). Fair hardware resource
allocation for every individual task. The difficulty of this issue comes from the vari-
ations of characteristics of each physical qubits in the processor includes operational
error rates and qubit lifetimes [49]. To solve this, the compiler needs to take those
error information into account to optimize the circuit. 2). Avoidance of unwanted
interference between the individual quantum circuit. Improving utilization of the
processor by executing multiple programs concurrently can increase the unwanted
interference between independent quantum circuits. To withdraw serious destructive
interference, one option is to monitor and compare the performance of parallel exe-
cution and to feedback it to the next execution phase, single or parallel [4]. Rather
than that, in this thesis, we directly focused on the crosstalk characterization in the
processor and optimize qubit allocation itself. 3). Optimization of the operational
timing of each circuit to minimize the unnecessary decoherence effect. In the case
of multi-programming with several lengths of quantum circuits, the shorter circuits
suffer wait duration until the longer circuit’s operation ends, and it may cause the
decaying of a quantum state prepared by shorter circuits and decline the output
reliability. In this study, we focus on issues 2 and 3 in particular.

10

Chapter 3

Error Detection Methodology

3.1 Crosstalk Noise
3.1.1 Experimental setup
Error information of IBMQ systems from daily calibration is provided in IBM Quan-
tum Experience [2]. We can utilize those for software or applications including noise-
aware compiler [32]. However we need additional noise characterization to mitigate
the crosstalk effect [48].

As we mentioned in Sec.2.5, one type of crosstalk occurs when we execute specific
pairs of hardware qubits due to the strength of the coupling interaction. In this paper,
we defined this effect as the ratio between a gate error rates single execution and
conditional error rate more than two gates executed simultaneously. Namely, the
crosstalk effect X(gi,gj) from gj to the gate gi defined as follows:

X(gi,gj) =
ϵ(gi|gj)

ϵgi
(3.1)

To detect crosstalk hardware, we use Randomized Benchmarking (RB), the stan-
dard method to characterize hardware gate error rates. There are several variations
of this method depending on the situation and usage [6], [41], [50], [51], [10], [52].

First, we characterize gate error rates ϵgi by the standard RB procedure. Then, to
detect conditional error rates ϵ(gi|gj), we use Simultaneous Randomized Benchmarking
(SimRB) [41].

When we investigate the crosstalk error between gates gi and gj, we first calculate
the respective error rates E(gi) and E(gj) using ordinary RB. Next, we calculate the
conditional error rates E(gi|gj) and E(gj|gi) when two gates are executed simulta-

11

neously using SimRB. When gi is affected by crosstalk by gj, E(gi|gj) is larger than
E(gi).

3.1.2 Characterization Crosstalk Noise
Here we show the crosstalk magnitude and distribution on IBM Q System 27-qubit
processor (IBM Q Toronto, IBM Q Paris) characterized by using SimRB introduced
in Sec 3.1. Each cell represents the combination of conditioned error rates between
the vertical and horizontal axis. Here we show the ratio of error rates of conditional
cases and independent cases as the size of colored boxes. We can see that there are
two types of crosstalk distribution. The one is a short-range and strong error, and
the other is a long-range and weak error. The first one that the combinations placed
in a few hops are a relatively higher crosstalk error, and also crosstalk appears
symmetrically in the processor, for example, crosstalk between qubits (7, 10) and
(12, 15) interact each other. On the other hand, crosstalk errors on (19, 22) distribute
long-range but relatively weak that also shown in Fig. 3.2d.

12

Figure 3.1: Crosstalk distribution on the IBMQ Toronto system. The inde-
pendent cases are represented as small white boxes on the center of each cell whose
size is fixed. When the conditional error rate is higher, the ratio is denoted as the
size of orange boxes. On the contrary, it gets lower, represented as the size of blue
boxes. The diagonal and cells next to diagonals filled with light gray indicate the
combinations that cannot be executed in parallel.

13

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Crosstalk distribution on IBM Q System These figures show the crosstalk re-
lationship on IBM Q System 27-qubit processor (IBM Q Toronto). The graph is a schematic
representation of the processor, with each vertex representing a qubit and each edge representing
a two-qubit coupling. Among the edges in the graph, the two-qubit coupling with crosstalk is
indicated by the dashed connection. The red dashed lines represent crosstalk at a distance of one
hop, and the blue dashed lines represent crosstalk more than two hops. The data show that most
of the strong crosstalk occurs within one hop, and is particularly concentrated in the center of the
processor 3.2a. On the other hand, certain two-qubit gates ((8, 11), (14, 16), (19, 22), (21, 23), and
(23, 24)) share the crosstalk in long-range 3.2b–3.2f.

14

3.1.3 Reducing detection overhead strategy
In previous work on the noise-aware compilation, the software uses calibration data
such as the gate error rates and coherence time provided on a daily basis to optimize
the circuit. However, the execution time required to investigate crosstalk of all the
gate combinations even for a 27-qubit system is not realistic [48]. Therefore, in
this study, we limited the investigation items to the practical parts by following the
procedure to reduce the computational cost of crosstalk detection.

Step 1: Randomly investigate the crosstalk relation. Since CNOTj gates
that are in a crosstalk noise relationship with a CNOTi gate tend to be in a crosstalk
noise relationship with other CNOTk gates, for example (19, 22) shown in Fig. 3.1
and Fig. 3.2d. First, we randomly select a few qubit pairs and investigate the
existence of crosstalk. If there are any qubit pairs with crosstalk, we examine other
combinations of them. By repeating this process to some extent, we can efficiently
trace the error information of the entire processor.

Step 2: Investigate only strong crosstalk is observed. As shown in Fig. 3.3,
crosstalk noises tend to appear in the same part of the processor. This is probably
because crosstalk is caused by the design and packaging of the processor. Therefore
we investigate only those parts that have particularly strong crosstalk errors obtained
in steps 1 on daily usage.

15

Figure 3.3: Temporal variation in crosstalk noise. The solid lines represent the
independent error rate of two qubits gate, and the dashed lines denote the condi-
tioned error rate when two CNOT gates on different processor positions are executed
concurrently. Conditioned error rates are 2x to 5x higher than the independent cases
and tend to keep the ratio from its baseline for most periods.

16

3.2 Measurement Waiting Duration
3.2.1 Experimental setup
To evaluate the impact of measurement waiting duration, we conducted a preliminary
experiment as shown in Fig. 3.4. We compare the output reliability between two
circuits of several initial states, the one inserts waiting duration to the quantum
circuit before gate operation and the other one after gate operation that may cause
more decoherence effect. Here we use the Qiskit new command, Delay operation[53]
to insert waiting duration to the quantum circuit.

|0⟩ Delay insertion (dt) U

(a) Delay duration before operation (Keep |0⟩ state as late as possible.)

|0⟩ U Delay insertion (dt)
(b) Delay duration after operation U (Operate gate state as soon as possible).

Figure 3.4: Circuits for delay insertion experiments. To evaluate how impact
the measurement waiting duration, the author compares two circuits. Upper one is
inserted the delay duration before gate operation U . Another one inserts delay after
operation that expected to cause higher decoherence error. In this experiments we
use the Id gate, X gate and H gate in U part to initialize the qubit state.

3.2.2 Impact of measurement waiting duration
As shown in Fig. 3.5, the output reliability vary The vertical axis denotes the Jensen-
Shannon divergence between ideal probability distribution calculated by Qiskit Aer
simulator and experimental result from IBM Q Toronto. That represents how close
the experimental results to ideal. When JSD is 0, the two distribution are same.
The horizontal axis represents delayed duration time inserted each experiments. dt
is the units of duration time which is defined as 2

9
ns. The left column represents the

result of |0⟩ state case. The middle column are initialized as |1⟩ state by X gate and
the right ones are prepared as |+⟩ state by H gate. To make the execution time the
same, we use Id gate in |0⟩ state case. The maximum delay duration here 10× 106 dt
is approximately double the time of T2 qubit life time of IBM Q Toronto. We execute
5 times of 8192 trial and all error bar represents 3σ bounds. The |0⟩ case shows that

17

keeping ground state as late as possible (ALAP) may mitigate the decoherence effect
of the qubit state.

18

(a) |0⟩ state, from 0 to 10× 104 dt (b) |1⟩ state from 0 to 10× 104 dt (c) |+⟩ state from 0 to 10× 104 dt

(d) |0⟩ state from 0 to 10× 105 dt (e) |1⟩ state from 0 to 10× 105 dt (f) |+⟩ state from 0 to 10× 105 dt

(g) |0⟩ state from 0 to 10× 106 dt (h) |1⟩ state from 0 to 10× 106 dt (i) |+⟩ state from 0 to 10× 106 dt

Figure 3.5: The impact of measurement waiting duration on three initial state.

19

Chapter 4

Proposed Algorithms

4.1 Qubit allocation policy
The software developed in this study takes multiple programmed quantum circuits
as input and combines them into a single compiled quantum circuit as output. In the
compilation phase, the initialization of physical qubits is an important issue of NISQ
computing, like a reduction of SWAP gates. In particular, when multiple indepen-
dently programmed quantum circuits are executed on a processor simultaneously,
qubit assignment that takes crosstalk noise into account can minimize interference
with independent circuits and improve the reliability of the entire quantum compu-
tation.

4.1.1 High cost circuit first allocation
Our multi-programming layout method is implemented as an extension of Noise-
adaptive layout [31], [54] used in the current Qiskit transpiler.

At first, the muli-compiler analyzes the error information of quantum chip based
on CNOT and measurement error rates as a weighted graph G(V,E), here V : vertex
is the number of qubits, E: edge is the number of qubits connection and the weight is
the reliability of qubits or edges, same as Noise-adaptive layout method [54]. Then
in the mapping phase, it compares the cost of the individual quantum circuit in
a simultaneous execution set, that represents reliability calculated as a number of
qubits times CNOT depth. And then search for better allocation like the most costly
program to the most reliable physical qubits based on greedy heuristics.

20

Figure 4.1: Compilation procedure of multi-programming circuit Here we
show our proposal compilation procedure for parallel execution of multiple quantum
circuits. As the input, the compiler takes a list of quantum circuits to be executed
on same round. To prioritize physical qubits allocation of independent programs in
parallel execution, we defined the cost C the product of the number of qubits and
the number of CNOT gates. The circuits are allocated to physical qubits from the
higher cost first. In the allocation phase, the most reliable qubits are searched and
allocated based on error information (gate error, measurement error, crosstalk) of
the processor using the greedy method.

4.1.2 Crosstalk aware qubit allocation
For the crosstalk mitigation, we extend our multi-compiler by using crosstalk noise
data taken from the processor, in addition to gate and measurement error rates that
are originally used. Every time program instruction allocated to physical qubits, the
compiler re-analyze the noise graph of processor based on the crosstalk error on that
physical qubits that is introduced in Sec. 3.1.

21

4.2 Scheduling multi-programming instruction pol-
icy

As shown in Sec. 3.2, keeping qubit in the ground state can mitigate decoherence
error. Current IBM Q System except for Hummingbird r2, measurement operation
is performed on all hardware qubits at once as a trigger. In the multi-programming
case, during waiting for longer circuit’s gate operations and measurement, the shorter
program may decohere unnecessarily Fig. 4.2a. To mitigate this error, we propose a
scheduling method, multi-ALAP scheduling method as an extension of Qiskit sched-
uler, ALAP pass [55] similar to the delayed instruction method proposed in [4].
However, the current processor’s qubit lifetime is much better than when previous
work conducted. We verify how this type of scheduling method works on the current
IBM Q System in Sec 5.3.

Multi-ALAP method schedules each gate in the circuit as late as possible to keep
each qubit in the ground state Fig. 4.2b.

(a) As soon as possible schedule. (b) As late as possible schedule

Figure 4.2: Scheduling for decoherence mitigation in the multi-
programming case.

22

Chapter 5

Experiments and Evaluation

We conducted two series of evaluations for our proposals (Crosstalk adaptive layout,
Multi-ALAP scheduling). In the entire experiment, we care about the output relia-
bility as JSD of output distributions. As a baseline, we compare those to the Qiskit
transpile method.

5.1 Setup
We use small size benchmark circuits from previous work [56] as shown in Table 5.1.

We used IBM Quantum Experience API [2], IBM Q Toronto and Qiskit version
0.23.1, Qiskit ignis version 0.5.1, Qiskit terra version0.16.1 Intel Core i5 processor
(1.6GHz, 4GB RAM), Python version 3.8.1 to evaluate proposed method and com-
pared to the qiskit transpiler with Dense layout, Noise-Adaptive layout [31], SABRE
layout [57].

To quantify the performance of proposed method, we used Jsensen-Shannon Di-
vergence (JSD). JSD is the metric for comparing the distance of two probability
distributions. When distributions are same, JSD is 0. The definition of JSD con-
tains Kullback-Liebler Divergence. KLD is defined as following:

D(p||q) =
∑
i

p(i) ln
p(i)

q(i)
(5.1)

and JSD is defined as following:

m(i) =
1

2
(p(i) + q(i)) (5.2)

23

Benchmark Description Qubits Gates CX
deutsch Deutsch algorithm with 2 qubits for f(x) = x 2 5 1
grover Grover’s algorithm 2 16 2
linearsolver Solver for a linear equation of one qubit 3 19 4
toffoli Toffoli gate 3 18 6
fredkin Fredkin gate 3 19 8
adder Quantum ripple-carry adder 4 23 10
error_correctiond3 Error correction with distance 3 and 5 qubits 5 114 49

Table 5.1: Small Benchmark Circuits. We picked several small size quantum
circuit to benchmark our proposal from benchmark circuits set called QASMBench
[56].

JSD(p, q) = [
1

2
D(p||m) +

1

2
D(q||m)]

1
2 (5.3)

where p and q represent each probability distributions and i corresponds to a
possible item of them.

5.2 Crosstalk adaptive layout
In the first series, we evaluate the performance of our new qubit allocation policy
that is called Crosstalk adaptive layout, the enhanced version of the Noise adaptive
layout method in Qiskit [31]. We compared our proposed layout method to the Qiskit
transpiler [58]. We used several combinations of quantum circuits from QASMBench
[56] shown in Table 5.2 and Table 5.3. At first, the compiler converts a set of circuits
to one composed circuit and allocates it to the hardware qubits by applying each
layout method. And then execute it as a multi-programming on IBM Q System. To
quantify the noise effect to the reliability of parallel execution, we also run circuits set
independently that allocated the same hardware qubits as the multi-programming
case and compare those output quality by using Jensen-Shannon Divergence (JSD)
introduced in Sec. 5.1.

5.2.1 Results
To evaluate the output reliability of the layout method, we use Jensen-Shannon
divergence (JSD) between output distributions. From the definition, the lower JSD
value represents better results in this case. Fig. 5.1 shows the results of the parallel

24

execution of 3 circuits case, and Fig. 5.2 4 circuits case. Here, we compare our
crosstalk adaptive approach to Qiskit layout passes, dense layout, noise-adaptive
layout, and SABRE layout.

Our proposal outperforms the baselines for some of the benchmark circuit com-
binations 3, 4 and 5 cases shown in Table 5.2, Table 5.3 and Table 5.4. Particularly
our method works well in the case of the quantum circuits with 4 to 10 CNOT gates,
allocated later which means the program assigned less reliable qubits in the proces-
sor. On the contrary, in the shorter operation circuits case with few CNOT gates
that includes deutsch, grover, linear solver , IBM Q Toronto can treat each task with
high reliability regardless of the choice of the layout method. And also, in the case
of the longer operation circuit case with tens of CNOT gates, error_correctiond3,
it seems to be difficult to process high fidelity in current processors. This shows our
techniques avoid the unwanted decaying caused by parallel processing and improve
the utilization of the processor efficiently.

25

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: Comparison of JSD of the parallel execution consisting 3 circuits case. We com-
pared our proposal layout method Crosstalk-adaptive (Blue) to Qiskit compilation methods include Dense
layout(Green), Noise-adaptive layout(Red), SABRE layout(Yellow). Each sub-figures are the benchmark
case that corresponds to Table 5.2. For example, 5.1a is one multi-programming circuit consisting fredkin,
toffoli and grover circuit shown in the first row in Table 5.2. JSD shows how close the result from IBM
Q Toronto to the ideal probability distribution calculated by Qiskit Aer simulator. From the definition,
when JSD is 0, two distributions are the same.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.2: Comparison of JSD of the parallel execution consisting 4 circuits case. We com-
pared our proposal layout method Crosstalk-adaptive (Blue) to Qiskit compilation methods include Dense
layout(Green), Noise-adaptive layout(Red), SABRE layout(Yellow). Each sub-figures are the benchmark
case that corresponds to Table 5.3. For example, 5.2d is one multi-programming circuit consisting two
adder, fredin and toffoli circuits shown in the first row in Table 5.3. JSD shows how close the result
from IBM Q Toronto to the ideal probability distribution calculated by Qiskit Aer simulator. From the
definition, when JSD is 0, two distributions are the same.

(a) 1 (b) (c)

(d) (e) (f)

Figure 5.3: Comparison of JSD of the parallel execution consisting 5 circuits case. We com-
pared our proposal layout method Crosstalk-adaptive (Blue) to Qiskit compilation methods include Dense
layout(Green), Noise-adaptive layout(Red), SABRE layout(Yellow). Each sub-figures are the benchmark
case that corresponds to Table 5.4. For example, 5.3d is one multi-programming circuit consisting two
adder, fredkin and two toffoli circuits shown in the fourth row in Table 5.4. JSD shows how close the
result from IBM Q Toronto to the ideal probability distribution calculated by Qiskit Aer simulator. From
the definition, when JSD is 0, two distributions are the same.

28

5.3 Modifying Measurement Waiting Duration
In the second series, we evaluate the performance of Multi-ALAP scheduling method
introduced in Sec. 4.2. To evaluate the proposed method, we compare it to the
output of non-optimized scheduling cases. Fig. 5.4, Fig. 5.5, and Fig. 5.6 show the
impact of optimized scheduling of each number of circuit set of multi-programming
cases correspond to Table 5.2, Table 5.3, and Table 5.4.

5.3.1 Evaluation with benchmark circuits
In the horizontal axis, each bar represents JSD that shows how close the result
from IBM Q System to the ideal probability distribution calculated by a noise-free
simulation with Qiskit Aer simulator. From the definition of JSD, 0 is the ideal case.
The red dashed line denotes the JSD between ideal results and uniform distribution
that corresponds to a noisy random output case. Similar to the previous study [4]
used IBM Q 16 Melbourne, we found our proposed method outputs almost the same
results as the non-optimized case on the current leading processor IBM Q Sydney 27-
qubit system. We assume the qubit coherent time is much longer than the tolerable
circuit depth on the current IBM Q System.

29

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: JSD of Multi-ALAP scheduling: 3 circuits multi-programming case. We compared
our proposal scheduling Multi ALAP scheduling (Blue) to non-optimized (Red). Each sub-figures are
the benchmark case that corresponds to Table 5.2. For example, 5.4b is one multi-programming circuit
consisting linearsolver, grover and deutsch circuit shown in the second row in Table 5.2. JSD shows
how close the result from IBM Q Toronto to the ideal probability distribution calculated by Qiskit Aer
simulator. From the definition, when JSD is 0, two distributions are the same.

30

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.5: JSD of Multi-ALAP scheduling: 4 circuits multi-programming case. We compared
our proposal scheduling Multi ALAP scheduling (Blue) to non-optimized (Red). Each sub-figures are
the benchmark case that corresponds to Table 5.3. For example, 5.5b is one multi-programming circuit
consisting toffoli, linearsolver, grover and deutsch circuits shown in the second row in Table 5.3. JSD
shows how close the result from IBM Q Toronto to the ideal probability distribution calculated by Qiskit
Aer simulator. From the definition, when JSD is 0, two distributions are the same.

31

(a) (b) (c)

(d) (e) (f)

Figure 5.6: JSD of Multi-ALAP scheduling: 5 circuits multi-programming case. We compared
our proposal scheduling Multi ALAP scheduling (Blue) to non-optimized (Red). Each sub-figures are
the benchmark case that corresponds to Table 5.3. For example, 5.6d is one multi-programming circuit
consisting two adder, fredkin, and two toffoli circuits shown in the fourth row in Table 5.3. JSD shows
how close the result from IBM Q Toronto to the ideal probability distribution calculated by Qiskit Aer
simulator. From the definition, when JSD is 0, two distributions are the same.

32

Label Name Qubits Gates CX
(a) grov grov grov 2 2 2 16 16 16 2 2 2
(b) line grov deut 3 2 2 19 16 5 4 2 1
(c) line line line 3 3 3 19 19 19 4 4 4
(d) fred toff grov 3 3 2 19 18 16 8 6 2
(e) adde fred toff 4 3 3 23 19 18 10 8 6
(f) toff toff toff 3 3 3 18 18 18 6 6 6
(g) fred fred fred 3 3 3 19 19 19 8 8 8
(h) erro fred toff 5 3 3 114 19 18 49 8 6
(i) erro erro erro 5 5 5 114 114 114 49 49 49

Table 5.2: 3 benchmark circuits multi-programming case.

Label Name Qubits Gates CX
(a) grov grov grov grov 2 2 2 2 16 16 16 16 2 2 2 2
(b) toff line grov deut 3 3 2 2 18 19 16 5 6 4 2 1
(c) fred toff grov grov 3 3 2 2 19 18 16 16 8 6 2 2
(d) line line line line 3 3 3 3 19 19 19 19 4 4 4 4
(e) fred toff line line 3 3 3 3 19 18 19 19 8 6 4 4
(f) toff toff toff toff 3 3 3 3 18 18 18 18 6 6 6 6
(g) fred fred fred fred 3 3 3 3 19 19 19 19 8 8 8 8
(h) erro fred toff toff 5 3 3 3 114 19 18 18 49 8 6 6

Table 5.3: 4 benchmark circuits multi-programming case.

Label Name Qubits Gates CX
(a) line line line line line 3 3 3 3 3 19 19 19 19 19 4 4 4 4 4
(b) toff toff toff toff toff 3 3 3 3 3 18 18 18 18 18 6 6 6 6 6
(c) fred fred fred fred fred 3 3 3 3 3 19 19 19 19 19 8 8 8 8 8
(d) adde adde fred toff toff 4 4 3 3 3 23 23 19 18 18 10 10 8 6 6
(e) erro erro fred toff toff 5 5 3 3 3 114 144 19 18 18 49 49 8 6 6
(f) erro erro erro erro fred 5 5 5 5 3 114 114 114 114 114 49 49 49 49 49

Table 5.4: 5 benchmark circuits multi-programming case.

33

Chapter 6

Conclusion and Remarks

Crosstalk-adaptive layout method cares about crosstalk characterization of the pro-
cessor in the qubit allocation phase of the compilation process. To mitigate unneces-
sary decoherence, we proposed Multi-ALAP scheduling method that moves shorter
circuits in multi-programming to a later schedule. Our evaluations show that two
noise factors, crosstalk in current processor and difference of operational duration
between independent QC in multi-programming, do not have a serious impact on
the output reliability of parallel execution. In the case of the layout method, our
proposal outputs a qubit allocation pattern that is similar to the Noise-adaptive
layout method. We consider since the crosstalk errors in the current processor are
sufficiently suppressed, our proposal could not make a different result. Future work is
required in order to verify these results comes from the improvement of the processor
itself, which conduct further experiments on old model processors to compare the re-
sults. For the scheduling method, we consider the qubit coherent time of the current
processor is enough for the executable quantum circuits that only contain around
10 CNOT gates due to the gate error rates. Except for error_correctiond3, the
operational duration of our benchmarks finished about 40 % of average T1 time co-
herent time of IBM Q Toronto. We expect our scheduling method performs well on
the processor that can accept the longer depth of quantum circuit with smaller gate
error rates or when the difference of operational durations of independent circuits in
multi-programming is bigger.

34

Acknowledgement

I would like to thank my supervisor, Professor Rodney Van Meter. I have been in his
lab for three years since I was a sophomore. He gave me not only the method of re-
search but also the attitude of research and various lessons. I thank him for allowing
me to present at conferences and write dissertations. Thanks to his financial support
for the participation in wonderful hackathon events, including, QiskitCamp2019,
QiksitCampAsia2019. I would like to thank my supervisor, Project Assistant Pro-
fessor Takahiko Satoh. He worked with me on almost every project I worked on.
He carefully discussed each of my childish proposals for research, provided theoret-
ical support and new perspectives. Thanks to Jun Murai. He taught me a serious
attitude towards the Internet and technology.

Thanks to my senior Takaaki Matsuo. He showed me how to work in univer-
sity life and lab activities, and consulted me many times, and provided appropriate
advice. Thanks to Ryosuke Satoh. I grew up working with him for Mitou Target
and NQC project for almost 3 years in total. Ryosuke also strongly supported my
activities at the laboratory and taught me too many things. Thanks to Ryusei Siiba,
Takanori Hirano, and Shigetora Miyashita. Talking with them in the lab always gave
me witty stories, and I was able to spend a fun time. Thanks to Takuma Nagaoka.
It was great for me that Takuma gave me many questions and advice from a keen
point of view. Thanks to Shigetora Miyashita, Makoto Nakai, Sitong Liu, Yinjie
Zhou, Nozomi Tanetani, Kosuke Onishi, Takuma Nagaoka, Hikaru Yokomori, Ryota
Kikuchi, and Taiga Yanagida for their active contribution to AQUA.

Thanks to the members of the IBMQ team, Qiskit Community. Thanks to them,
I was able to conduct various experiments and learn.

Finally, I thank the Faculty and all members of the Tokuda, Murai, Kusumoto,
Nakamura, Takashio, Van Meter, Uehara, Mitsugi, Nakazawa, Takeda Joint Re-
search Group (RG) and my family for all the supports.

35

Bibliography

[1] John Preskill. Quantum Computing in the NISQ era and beyond. 2018. doi:
10.22331/q-2018-08-06-79. arXiv: 1801.00862.

[2] IBM. IBM Quantum Experience. https://quantum-computing.ibm.com/.
[3] Rigetti. Rigetti Quantum Cloud Services. https://qcs.rigetti.com/.
[4] Poulami Das et al. “A case for multi-programming Quantum computers”. In:

Proceedings of the Annual International Symposium on Microarchitecture, MI-
CRO. IEEE Computer Society, Oct. 2019, pp. 291–303. isbn: 9781450369381.
doi: 10.1145/3352460.3358287.

[5] Lei Liu and Xinglei Dou. A New Qubits Mapping Mechanism for Multi-programming
Quantum Computing. 2020. arXiv: 2004.12854 [cs.DC].

[6] E. Knill et al. “Randomized benchmarking of quantum gates”. In: Physical
Review A - Atomic, Molecular, and Optical Physics 77.1 (2008), pp. 1–7. issn:
10502947. doi: 10.1103/PhysRevA.77.012307. arXiv: 0707.0963.

[7] J. M. Chow et al. “Randomized benchmarking and process tomography for gate
errors in a solid-state qubit”. In: Physical Review Letters 102.9 (2009), pp. 1–4.
issn: 00319007. doi: 10.1103/PhysRevLett.102.090502. arXiv: 0811.4387.

[8] Kenneth Rudinger et al. “Probing Context-Dependent Errors in Quantum Pro-
cessors”. In: 021045 (2019), pp. 1–12. doi: 10.1103/PhysRevX.9.021045.

[9] Pranav Mundada et al. “Suppression of Qubit Crosstalk in a Tunable Coupling
Superconducting Circuit”. In: Phys. Rev. Applied 12 (5 Nov. 2019), p. 054023.
doi: 10.1103/PhysRevApplied.12.054023. url: https://link.aps.org/
doi/10.1103/PhysRevApplied.12.054023.

[10] David C. McKay et al. “Three-Qubit Randomized Benchmarking”. In: Phys-
ical Review Letters 122.20 (2019), pp. 1–6. issn: 10797114. doi: 10.1103/
PhysRevLett.122.200502. arXiv: 1712.06550.

36

[11] P. Krantz et al. “A quantum engineer’s guide to superconducting qubits”. In:
Applied Physics Reviews 6.2 (2019). issn: 19319401. doi: 10.1063/1.5089550.
arXiv: 1904.06560.

[12] IBM Research. IBM’s Roadmap For Scaling Quantum Technology. https://
www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/.

[13] Google AI. A Preview of Bristlecone, Google’s New Quantum Processor. https:
//ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-
new.html.

[14] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–
332.

[15] Lov K Grover. “A fast quantum mechanical algorithm for database search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing. 1996, pp. 212–219.

[16] Daniel Gottesman. “Stabilizer codes and quantum error correction”. In: arXiv
preprint quant-ph/9705052 (1997).

[17] Austin G Fowler et al. “Surface codes: Towards practical large-scale quantum
computation”. In: Physical Review A 86.3 (2012), p. 032324.

[18] Kishor Bharti et al. Noisy intermediate-scale quantum (NISQ) algorithms.
2021. arXiv: 2101.08448 [quant-ph].

[19] Yudong Cao et al. “Quantum Chemistry in the Age of Quantum Computing”.
In: Chemical Reviews 119.19 (Aug. 2019), pp. 10856–10915. issn: 1520-6890.
doi: 10.1021/acs.chemrev.8b00803. url: http://dx.doi.org/10.1021/
acs.chemrev.8b00803.

[20] Suguru Endo et al. Hybrid quantum-classical algorithms and quantum error
mitigation. 2020. arXiv: 2011.01382 [quant-ph].

[21] Suguru Endo, Iori Kurata, and Yuya O. Nakagawa. “Calculation of the Green’s
function on near-term quantum computers”. In: Phys. Rev. Research 2 (3 Aug.
2020), p. 033281. doi: 10.1103/PhysRevResearch.2.033281. url: https:
//link.aps.org/doi/10.1103/PhysRevResearch.2.033281.

[22] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum
processor”. In: Nature Communications 5.1 (July 2014). issn: 2041-1723. doi:
10.1038/ncomms5213. url: http://dx.doi.org/10.1038/ncomms5213.

37

[23] Jarrod R McClean et al. “The theory of variational hybrid quantum-classical
algorithms”. In: New Journal of Physics 18.2 (Feb. 2016), p. 023023. issn: 1367-
2630. doi: 10.1088/1367-2630/18/2/023023. url: http://dx.doi.org/10.
1088/1367-2630/18/2/023023.

[24] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm. 2014. arXiv: 1411.4028 [quant-ph].

[25] Takahiko Satoh, Yasuhiro Ohkura, and Rodney Van Meter. “Subdivided Phase
Oracle for NISQ Search Algorithms”. In: IEEE Transactions on Quantum Engi-
neering 1 (2020), pp. 1–15. issn: 2689-1808. doi: 10.1109/tqe.2020.3012068.
url: http://dx.doi.org/10.1109/TQE.2020.3012068.

[26] Robert Sutor. Dancing with Qubits. Nov. 2019. isbn: 978-1-83882-736-6.
[27] IBM. Defining Quantum Circuits. https : / / qiskit . org / textbook / ch -

algorithms/defining-quantum-circuits.html.
[28] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-

tum Information: 10th Anniversary Edition. 10th. USA: Cambridge University
Press, 2011. isbn: 1107002176.

[29] Bochen Tan and Jason Cong. “Optimal Layout Synthesis for Quantum Com-
puting”. In: Proceedings of the 39th International Conference on Computer-
Aided Design. ICCAD ’20. Virtual Event, USA: Association for Computing
Machinery, 2020. isbn: 9781450380263. doi: 10.1145/3400302.3415620. url:
https://doi.org/10.1145/3400302.3415620.

[30] A. Zulehner, A. Paler, and R. Wille. “An Efficient Methodology for Map-
ping Quantum Circuits to the IBM QX Architectures”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38.7 (2019),
pp. 1226–1236. doi: 10.1109/TCAD.2018.2846658.

[31] Prakash Murali et al. “Noise-Adaptive Compiler Mappings for Noisy Intermediate-
Scale Quantum Computers”. In: International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS (2019),
pp. 1015–1029. doi: 10.1145/3297858.3304075. arXiv: 1901.11054.

[32] Shin Nishio et al. “Extracting Success from IBM ’ s 20-Qubit Machines Using
Error-Aware Compilation”. In: 16.3 (2020).

[33] Matteo G. Pozzi et al. Using Reinforcement Learning to Perform Qubit Routing
in Quantum Compilers. 2020. arXiv: 2007.15957 [quant-ph].

[34] Amazon. Amazon Braket. https://aws.amazon.com/jp/braket/.

38

[35] D-wave. D-wave Leap. https://cloud.dwavesys.com/leap/.
[36] Google. Quantum Computing Playground. https://experiments.withgoogle.

com/quantum-computing-playground.
[37] Microsoft. Microsoft Azure Quantum. https://azure.microsoft.com/en-

us/services/quantum/.
[38] Rigetti. Rigetti Forest. https://www.rigetti.com/quantum-computing/.
[39] Xanadu. Xanadu Qauntum Cloud. https://www.xanadu.ai/.
[40] Frank Leymann et al. Quantum in the Cloud: Application Potentials and Re-

search Opportunities. 2020. arXiv: 2003.06256 [quant-ph].
[41] Jay M. Gambetta et al. “Characterization of addressability by simultaneous

randomized benchmarking”. In: Physical Review Letters 109.24 (Dec. 2012).
issn: 00319007. doi: 10.1103/PhysRevLett.109.240504. arXiv: 1204.6308.

[42] Sarah Sheldon et al. “Procedure for systematically tuning up cross-talk in
the cross-resonance gate”. In: Physical Review A 93.6 (2016), pp. 1–5. issn:
24699934. doi: 10.1103/PhysRevA.93.060302. arXiv: 1603.04821.

[43] P. Krantz et al. “A quantum engineer’s guide to superconducting qubits”. In:
Applied Physics Reviews 6.2 (June 2019), p. 021318. issn: 1931-9401. doi:
10.1063/1.5089550. url: http://dx.doi.org/10.1063/1.5089550.

[44] C. Ospelkaus et al. “Trapped-Ion Quantum Logic Gates Based on Oscillating
Magnetic Fields”. In: Phys. Rev. Lett. 101 (9 Aug. 2008), p. 090502. doi: 10.
1103/PhysRevLett.101.090502. url: https://link.aps.org/doi/10.
1103/PhysRevLett.101.090502.

[45] Robin Harper, Steven T. Flammia, and Joel J. Wallman. “Efficient learning
of quantum noise”. In: Nature Physics (2020). issn: 17452481. doi: 10.1038/
s41567-020-0992-8. arXiv: 1907.13022.

[46] Frank Arute et al. “Quantum supremacy using a programmable superconduct-
ing processor”. In: Nature 574.7779 (2019), pp. 505–510.

[47] Yongshan Ding et al. “Systematic Crosstalk Mitigation for Superconducting
Qubits via Frequency-Aware Compilation”. In: (2020). arXiv: 2008 . 09503.
url: http://arxiv.org/abs/2008.09503.

39

[48] Prakash Murali et al. “Software mitigation of crosstalk on noisy intermediate-
scale quantum computers”. In: International Conference on Architectural Sup-
port for Programming Languages and Operating Systems - ASPLOS. Associa-
tion for Computing Machinery, Mar. 2020, pp. 1001–1016. isbn: 9781450371025.
doi: 10.1145/3373376.3378477. arXiv: 2001.02826.

[49] Swamit S. Tannu and Moinuddin K. Qureshi. “Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Comput-
ers”. In: Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. AS-
PLOS ’19. Providence, RI, USA: Association for Computing Machinery, 2019,
pp. 987–999. isbn: 9781450362405. doi: 10.1145/3297858.3304007. url:
https://doi.org/10.1145/3297858.3304007.

[50] Easwar Magesan et al. “Efficient measurement of quantum gate error by inter-
leaved randomized benchmarking”. In: Physical Review Letters 109.8 (2012),
pp. 1–5. issn: 00319007. doi: 10.1103/PhysRevLett.109.080505. arXiv:
1203.4550.

[51] Timothy J. Proctor et al. “Direct Randomized Benchmarking for Multiqubit
Devices”. In: Physical Review Letters 123.3 (2019), pp. 1–7. issn: 10797114.
doi: 10.1103/PhysRevLett.123.030503. arXiv: 1807.07975.

[52] David C. McKay et al. “Correlated Randomized Benchmarking”. In: (2020).
arXiv: 2003.02354. url: http://arxiv.org/abs/2003.02354.

[53] IBM. qiskit.circuit.Delay. https : / / qiskit . org / documentation / stubs /
qiskit.circuit.Delay.html.

[54] IBM. qiskit.transpiler.passes.NoiseAdaptiveLayout. https : / / qiskit . org /
documentation/stubs/qiskit.transpiler.passes.NoiseAdaptiveLayout.
html.

[55] IBM. qiskit.scheduler.schedulecircuit. https://qiskit.org/documentation/
stubs/qiskit.scheduler.schedule_circuit.html.

[56] Ang Li and Sriram Krishnamoorthy. QASMBench: A Low-level QASM Bench-
mark Suite for NISQ Evaluation and Simulation. 2020. arXiv: 2005.13018
[quant-ph].

[57] IBM. qiskit.transpiler.passes.SabreLayout. https://qiskit.org/documentation/
stubs/qiskit.transpiler.passes.SabreLayout.html.

[58] IBM. qiskit.compiler.transpiler. https://qiskit.org/documentation/apidoc/
transpiler.html.

40

