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Multicore processing and distributed computing are crucial applications for the suc-
cess of these day’s computation. Since classical CPU’s physical limitation gets close,
as shown in Moor’s law, quantum computing is expected as the next-generation com-
puting. Similar to classical computing, multi-processing and distributed computing
can be thought of for future quantum computing applications. This thesis aims to
establish a resource allocation method that efficiently prepares a distributed quantum
state, especially a graph state, which is an important resource for quantum comput-
ing.

A key element of this method is a decision tree composed of three different graph
algorithms. By preparing three different graph algorithms, the allocator is able to
deal with various types of graphs. This resource allocation method outperformed
the random allocation in terms of the quality of the final state in the presence of
noise. This allocator is four times better than the naive allocation method in terms
of error tolerance in a simple situation. Even with a very complex graph, this allocator
still keeps generating a better state than the other allocation methods. As for the
scalability of this method, it works in a very straightforward way. However, the time
complexity of an entire system is not small. By setting a threshold for search space, it
is possible to suppress the time complexity of the entire process. These results show
us the path to efficient resource allocation in a practical situation.
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Chapter 1

Introduction

1.1 Background
Quantum computing has been developed as one candidate for next-generation com-
puting. Shor’s algorithm and Grover’s algorithm are two well-known quantum algo-
rithms that might outperform classical computing. Recently, the quantum Internet
also attracts researchers because of its capability of quantum information but also
its applicability. One of the most famous quantum Internet applications is Quantum
Key Distribution that allows us to share our secrete with a completely secure process.

Distributed Quantum Computing (DQC) is an future platform on top of those
two technologies. Quantum computers work cooperatively and enhance their compu-
tational power. There have not been built large quantum devices capable of DQC.
However, it is predicted that quantum computers can handle several hundreds of
qubits in the next decades. Under that situation, small scale DQC would be possible
in the real device. This paper aims to establish an efficient way to allocate qubits
over the distributed system.

1.2 Research Contribution
This project’s main contribution is establishing a resource allocation method to create
a quantum state for DQC. This allocation method outperformed a naive random
allocation in terms of the quality of the final state.

In most cases, this thesis’s allocation method outperformed a random and naive
allocation method in terms of the quality measured by stabilizer measurement. The
best results show that this thesis’s allocation method is 3.79 times efficient than the
random allocation in terms of the error tolerance. If the network topology is small
enough to handle, the allocation method can deal with a reasonably large graph state
(hundreds of qubits). Those results allow us to improve the resource allocations for
distributed quantum computers.
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Figure 1.1: The diagram of distributed quantum computing. All quantum computer
are connected by quantum links and classical links. The quantum computers work
together and generate large quantum state over the distributed system.

1.3 Thesis Structure
The structure of this thesis is as follows. Background information about quantum
computing is shown in Chapter 2. This chapter explains basic knowledge about
what is quantum computing and networking. Several graph algorithms explained in
Chapter 2 are key ideas in this thesis.

Chapter 3 explains the main proposals to establish a qubit allocation method
for the distributed systems. This chapter also lists the related works of distributed
quantum computing and graph state generation and introduces the key concepts of
the solution. Chapter 4 shows experiments to investigate the performance and results.
Three different indices evaluate the allocation method comparing to naive allocations.
Finally, in chapter 5, conclude this paper and give some future perspectives.
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Chapter 2

Theory of Quantum Information

2.1 History of Quantum computation and
quantum information

The term "Quantum Computer" appeared for the first time in [1] by Richard P.
Feynman. It was proposed as a new type of computer for simulating quantum sys-
tems. In the classical computer, we haven’t been able to simulate a quantum system
without approximation most of the time. However, by supposing the existence of a
quantum computer based on quantum mechanics, Feynman showed we would be able
to simulate it in the exact solution.

Until now, Quantum Computing has been one active research field for physicists
and computer scientists. There have been many algorithms proposed on the quan-
tum computer. Two representative algorithms that are known as superior to the
known classical algorithms were Grover’s search algorithm [2] and Shor’s factoring al-
gorithm [3]. Grover’s algorithm allows us to search for target data from unstructured
data in quadratic time comparing to the known classical algorithms for the sake of the
superposition 2.5. Shor’s algorithm can factor a number in polynomial time, which is
an exponentially difficult task with known classical algorithms. These two algorithms
gave us a big motivation for building actual quantum computers. Other than those
two quantum algorithms, quantum computing is good at simulating quantum systems
accurately.

As experimental achievements of quantum computing, Y. Nakamura, Yu. A.
Pashkin, and J. S. Tsai were the first people that showed the real superconducting
qubit [4] in 1999. In 2008, David P. DiVincenzo from IBM showed criteria for building
practical quantum computers [5]. Since then, several companies such as IBM, Google,
Rigetti have developed actual hardware. IBM made its hardware public, and many
people have been using real devices via the cloud. Google claimed that they achieved
"Quantum supremacy," an experimental proof that the quantum computer is truly
superior to a classical computer in 2019 [6].
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Quantum Computing is one promising direction for future computing. However,
quantum devices are still far from practical. John Preskill named this era "NISQ"
(Noisy Intermediate-Scale Quantum) [7], which means the size of the processor is
relatively small, and the processor is very fragile to outside noise.

Classical computers protect data from errors by copying data and making it re-
dundant. However, because of the No-cloning theorem [8], a principle of quantum
mechanics that prohibit us from copying unknown quantum state. One solution to
this problem is error correction that protects quantum information from noise. Error
correction will be the main scheme for future quantum computing and allows us to
build a large scale quantum application.

2.2 Qubit
A bit is a unit of classical computation representing binary value 0 or 1. It has been
deterministic which we get either 0 or 1. In quantum computation, we also have a
computational unit called "Qubit." Qubit has different features from the classical bit.
One common explanation is "Qubit has two different states 0 and 1 simultaneously."
That feature is known as "Superposition," 2.5 which is a fundamental phenomenon
in quantum mechanics. The state of the qubit is not deterministic. The only way to
know the state is to measure it repeatedly. The qubit has two degrees of freedom.
One is called "amplitude," and the other is called "phase." In the Bloch sphere rep-
resentation shown in 2.1, the change of amplitude corresponds to the rotation on the
X or Y-axis. The phase can be changed by Z-axis rotation.

Any two-level quantum system can be a qubit candidate such as polarization of
photon, superconductor, and trapped ions. These qubit systems work differently in
terms of the physical level, but overall notations are the same.

2.2.1 Notations

One general notation to describe a qubit is "Dirac Notation," developed by Paul
Dirac [9]. In this notation, any quantum states can be represented as vectors that
has same number of elements of computational basis which is in a part of Hilbert
space H. Suppose we have a qubit with two computational basis |0〉 and |1〉.

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
. (2.2.1)

We can describe one qubit state |ψ〉 with those two computational bases and
coefficients.

|ψ〉 = α |0〉+ β |1〉 (2.2.2)
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Arbitrary one qubit state can be described with these two computational bases and
coefficients α, β ∈ C. α and β are arbitrary complex numbers which satisfy,

|α|2 + |β|2 = 1. (2.2.3)

|α|2 and |β|2 represents the probability of getting output "0" and "1" when we measure
this qubit respectively.

As an example, |ψ〉 = 1√
2
|0〉 + 1√

2
|1〉 is a superposition state of |0〉 and |1〉. The

probabilities of both states |0〉 and |1〉 are 0.5 and 0.5,
(∣∣∣ 1√

2

∣∣∣2 =
∣∣∣ 1√

2

∣∣∣2 = 1
2

)
. We

are also able to take negative and imaginary complex values as coefficients, such as
1√
2
|0〉 − 1√

2
|1〉, 1√

2
|0〉 − i√

2
|1〉.

2.2.2 Bloch Sphere Representation

Bloch sphere is a visualization of single-qubit as shown in 2.1. Arbitrary one qubit
state can be represented in the Bloch sphere. The north pole and south pole of the
Bloch sphere corresponds to |0〉 and |1〉. All single-qubit operations correspond to
the vector’s rotations in the Bloch sphere with specific angles and degrees. Pauli-X
gate 2.4.3 is corresponding to the 180 degree rotation on X-axis.

Figure 2.1: Bloch sphere for one qubit state representation. |0〉 and |1〉 are placed
either side of Z axis. All one qubit operations can be expressed by the rotation of the
vector in the bloch sphere. Image from [10].
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2.3 Multiple qubit systems
It is possible to easily extend one qubit representation to a multi-qubit representation
by taking its tensor product.

As an example, we have a two-qubit state |ψ〉. If it is initialized basis state, then
we are able to write down it as,

|ψ〉 = |00〉 = |0〉1 |0〉2 . (2.3.1)

where the subscripts 1 and 2 means the indices of the qubits. In the vector represen-
tation, |ψ〉 can be written as,

|ψ〉 = |00〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 . (2.3.2)

The size of the vector is 2N , N is the number of qubits. That means the length of
the vector grows exponentially as the number of qubits gets large. In other words,
the entire Hilbert space gets exponentially large. The reason why classical computers
can not simulate quantum computers, in general, is that the overall space is too big
to calculate. The classical computers have been able to handle at most 53 qubits in
a reasonable time.

2.4 Quantum Gates and Quantum Circuit Represen-
tations

A set of operations can be considered for constructing algorithms on quantum com-
puters. In classical algorithms, we have several gates, such as AND, NOT, and NAND.
All arithmetic calculations are based on these primitive gate sets. In quantum com-
puting, completely the same gates can be assumed. However, there are gates that are
unique to quantum computing.

There are essentially two types of operations, single-qubit, and two-qubit opera-
tions. The quantum operations for more than three qubits can also be built, but it
is always possible to decompose it with single and two-qubit operations.

The next several subsections are examples of elementary quantum gates. All of
the quantum gates are in a unitary group that has several mathematical features.
Especially, the unitary matrix U satisfies UU † = I.

As shown in Figure 2.2, a quantum circuit is represented with wires. The circuit
represents the time evolution of a quantum state from left to right.
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|ψ〉 |ψ〉

Figure 2.2: Quantum circuit representation. A Quantum state given at the left part
of the wire is the initial state. The initial state can be an arbitrary quantum state,
but generally, |ψ〉 = |0〉. The number of wire represents the number of qubits.

|ψ〉 U U |ψ〉

Figure 2.3: Circuit representation of single unitary gate. The output quantum state
U |ψ〉 as an output sate.

2.4.1 Single qubit unitary gate

Any SU(2) matrix can be a single-qubit gate. In the circuit diagram, we usually show
it with a box with U as Figure 2.3.

The definition of general SU(2) group matrix is,

U(θ, φ, λ) =

[
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ cos(θ/2)

]
(2.4.1)

where 0 ≤ θ, φ, λ ≤ 2π.
By substituting appropriate angles to it, we can create any single-qubit opera-

tions. However, there are specific quantum operations that we often use in quantum
algorithms. They are special cases of it and have a name.

2.4.2 Identity gate

There are four types of Pauli gate, Pauli-X, Pauli-Y, Pauli-Z, Identity. They are the
most fundamental quantum gates. Identity gate is just a simple Identity matrix that
does nothing to the quantum state. (I |ψ〉 = |ψ〉)

|ψ〉 I I |ψ〉

Figure 2.4: Circuit representation of Identity gate.

The identity matrix is,

I =

[
1 0
0 1

]
. (2.4.2)

11



2.4.3 Pauli-X gate

There are three types of Pauli gate, Pauli-X, Pauli-Y, and Pauli-Z. They are one of
the most fundamental quantum gates.

Pauli-X gate acts on one qubit quantum state and works similarly to the NOT
gate in classical. When we apply the Pauli-X gate to |0〉, then X |0〉 = |1〉. Otherwise,

|ψ〉 X X |ψ〉

Figure 2.5: Circuit representation of Pauli-X gate.

X |1〉 = |0〉. The matrix of Pauli-X gate is,

X =

[
0 1
1 0

]
. (2.4.3)

This matrix rotation corresponds to the π rotation on the X-axis in the Bloch sphere.

2.4.4 Pauli-Y gate

Pauli-Y gate also acts on one qubit quantum state. The matrix of the Pauli-Y gate
includes an imaginary number i, unlike the classical gate.

|ψ〉 Y Y |ψ〉

Figure 2.6: Circuit representation of Pauli-Y gate.

The matrix of Pauli-Y gate is,

Y =

[
0 −i
i 0

]
. (2.4.4)

This matrix rotation corresponds to the π rotation on the Y-axis in the Bloch sphere.

2.4.5 Pauli-Z gate

Pauli-Z gate is also called the phase rotation gate because it changes the phase of a
quantum state. When we apply Pauli-Z gate to |0〉, then nothing happens Z |0〉 = |0〉.
However, when we apply Pauli-Z gate to |1〉, then it becomes Z |1〉 = − |1〉.

12



|ψ〉 Z Z |ψ〉

Figure 2.7: Circuit representation of Pauli-Z gate.

The matrix representation of Pauli-Z gate is,

Z =

[
1 0
0 −1

]
. (2.4.5)

.
This matrix rotation corresponds to the π rotation on the Z-axis in the Bloch

sphere.

2.4.6 Hadamard gate

Hadamard gate plays an important role in creating a superposition of a qubit. Fig-
ure 2.8 shows the circuit representation of the Hadamard gate. If the input state is
|0〉, the state becomes |+〉 = |0〉+|1〉√

2
. Otherwise, if the input state is |1〉, the state be-

comes |−〉 = |0〉−|1〉√
2

. Those |+〉 and |−〉 are called "superposition" state. See Sec. 2.5
for more details about superposition.

|ψ〉 H H |ψ〉

Figure 2.8: Circuit representation of Hadamard gate.

The matrix representation of the Hadamard gate is,

H =
1√
2

[
1 1
1 −1

]
. (2.4.6)

The rotation of this matrix corresponds to the π rotation on the π
2
axis in the Bloch

Sphere.

2.4.7 S gate

Following two gates (S gate and T gate) are gates that rotate phase. S gate rotates
phase for π

2
. We are also able to describe it as a square root of the Pauli-Z gate

S =
√
Z. Thus the matrix representation of the S gate is also the square root of the

Pauli-Z gate.
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|ψ〉 S S |ψ〉

Figure 2.9: Circuit representation of S gate.

S =

[
1 0
0 i

]
. (2.4.7)

.

2.4.8 T gate

T gate rotates phase π
4
. T gate can be represented as T =

√
S as well as S gate.

|ψ〉 T T |ψ〉

Figure 2.10: Circuit representation of T gate.

T =

[
1 0

0 e
iπ
4

]
. (2.4.8)

.
A generalized form of single phase rotation gate is,

Rz(θ) =

[
1 0
0 eiθ

]
. (2.4.9)

When the rotation angles θ are π, π
2
, π
4
, corresponding phase rotation gates are

Rz(π) = Z, Rz(
π
2
) = S, Rz(

π
4
) = T respectively.

2.4.9 Two-qubit gate

Two-qubit gates also play an essential role in creating "Entanglement," a fundamen-
tal phenomenon unique to quantum mechanics (See 2.6). Two-qubit gates act on two
qubits, control, and target. When the control qubit is |1〉, a quantum gate works on
the target qubit. Otherwise, it doesn’t work. Figure 2.11 shows the circuit repre-
sentation of a two-qubit unitary gate. CUi,j represents the controlled-unitary gate
from qubit i to qubit j. The size of a single-qubit gate matrix is two by two unitary
matrix, but the two-qubit gate matrix has a four by four unitary matrix.
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|ψ〉
U

CU0,1 |ψ〉

Figure 2.11: Circuit representation of CU gate.

2.4.10 Controlled-NOT (CNOT) gate

Controlled-Not (CNOT, CX) gate is one of the most fundamental two-qubit gates.
When the control qubit click, the CNOT gate applies the Pauli-X gate to the target
qubit. Both Figure 2.12 and Figure 2.13 shows the circuit representation of CNOT
gate. Figure 2.13 is a relatively common way to represent the CNOT gate.

|ψ〉
X

CX0,1 |ψ〉

Figure 2.12: Circuit representation of CX gate.

|a〉

|b〉

|a〉

|b⊕ a〉

Figure 2.13: Another representation of CX gate. A notation ⊗ means XOR operation
in classical circuit (a+ bmod 2).

The matrix representation of the CNOT gate is,

CNOT = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.4.10)

Many algorithms and applications include the CNOT gate.

2.4.11 CZ (C-Phase) gate

Controlled-Z (Controlled-Phase) gate applies the Pauli-Z gate when the control qubit
is |1〉. This gate is used for creating a graph state that is a critical resource for
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measurement-based quantum computing. The matrix representation of the CZ gate
is,

CZ = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.4.11)

.

|ψ〉
Z

CZ0,1 |ψ〉

Figure 2.14: Circuit representation of CZ gate.

Clifford group

In general, the CZ gate, Hadamard gate, and S gate are called Clifford gate. Some-
times, the CNOT gate is also included because the CNOT gate is compatible with
the CZ gate with the Hadamard gate, as shown in Figure.

Those gates have a particular name because they can be simulated in the classical
computer efficiently. This theorem is called Gottesman-Knill’s theorem.

2.5 Superposition
Superposition is an essential phenomenon that allows quantum computers to handle
multiple data simultaneously. Superposition state includes several states at the same
time with specific probability amplitudes. For example, in the single-qubit case, the
easiest way to create superposition is to act the Hadamard gate on the |0〉.

H |0〉 =
|0〉+ |1〉√

2
=

1√
2
|0〉+

1√
2
|1〉 (2.5.1)

In this example, when we measure this single qubit, we can observe |0〉 with 50%

chance (
∣∣∣ 1√

2

∣∣∣2 = 1
2
) and |1〉 with 50% chance as well. As an another example, we are

also able to assume a following quantum state.

|ψ〉 =
1

2
|0〉+

√
3

4
|1〉 (2.5.2)
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In this case, we can observe |0〉 in 25% and |1〉 in 75%. This is also one possible
superposition state. More generally, one qubit superposition state can be represented
as,

|ψ〉 = α |0〉+ β|1〉 (2.5.3)

where |α|2 + |β|2 = 1 same as Eq. 2.2.2.
Note that when we measure a single superposition state, it converges a classical

0 or 1 state. To get a proportion of state before measurement, we have to prepare
copies of the circuit, then measure it repeatedly. As statistical information, we could
get the probability distribution of all outputs.

2.6 Entanglement
Entanglement plays a crucial role in Quantum information theory. An entangled
quantum state can be generated by performing a quantum operation over the two
different Hilbert spaces. Suppose we have a quantum state.

|ψ〉 =
|00〉+ |11〉√

2
(2.6.1)

When we measure this state, we cannot observe |01〉 and |10〉. Instead of those, the
states we are only able to observe are |00〉 and |11〉. We also explain that phenomenon
as "each qubit’s state doe not change independently." If the measurement result of
the first qubit is |0〉 (|1〉), then the state of the second qubit is determined as |0〉 (|1〉
at the same time, respectively. Important example usage of this entanglement is the
quantum teleportation algorithm (See. Sec. 2.8)based on Bell state (See. Sec. 2.7).

For the historical background, the existence of Quantum Entanglement had been
denied by physicists at that time. However, in later years, its existence was proven
by the violation of Bell’s inequality.

2.7 Bell State
As special states in entangled states, we have "Bell State," one of two qubits entangled
states.

|φ+〉 =
|00〉+ |11〉√

2
(2.7.1)

|φ−〉 =
|00〉 − |11〉√

2
(2.7.2)

|ψ+〉 =
|01〉+ |10〉√

2
(2.7.3)

|ψ−〉 =
|01〉 − |10〉√

2
(2.7.4)
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These are four types of bell states. The corresponding quantum circuit to generate the
state 2.7.1 is Figure 2.15. Following equations explain the procedure of that circuit.

|00〉
H

|φ+〉

|ψ0〉 |ψ1〉 |ψ2〉

Figure 2.15: Quantum Circuit to create |φ+〉

First, prepare two qubits and initialize them.

|ψ0〉 = |00〉 (2.7.5)

Next, apply the Hadamard gate to the first qubit.

|ψ1〉 = H |ψ0〉 =

(
|0〉+ |1〉√

2

)
|0〉 =

(
|00〉+ |10〉√

2

)
(2.7.6)

Finally, apply the CX gate from the first qubit to the second qubit.

|ψ2〉 = CX |ψ1〉 =
|00〉+ |11〉√

2
(2.7.7)

2.8 Quantum Teleportation
Quantum Teleportation is one prominent application using entanglement, especially
Bell pairs [11]. Ultimately, we can transfer information from one place to another, no
matter how far away between them. This technology is used for quantum commu-
nication. The teleportation procedure is following. Figure 2.16 shows the quantum
circuit for the quantum teleportation protocol to send one qubit information.

First, there are two people Alice and Bob, connected by a quantum link. Alice
has two qubits, and Bob has one qubit. Initially, these qubits are all |0〉 state.

|ψ0〉 = |00〉A |0〉B (2.8.1)

The subtext represents which person has which qubits (A is Alice and B is Bob).
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Alice

Bob

UInit

H

H

XM2 ZM1

M1

M2

UInit |0〉

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Figure 2.16: Procedure of Quantum Teleportation protocol. Init represents arbitrary
one qubit gate to encode data into a quantum state.

Second, Alice encodes the information she wants to send into the first qubit. We
can use any unitary quantum operation at this initialization. Here, we define that
unitary operation as UInit.

|ψ1〉 = UInit |ψ0〉 (2.8.2)

As a next step, Alice and Bob share an entangled pair of qubits. In this example,
we used |φ+〉 state. They create an entanglement in the second and the third qubit
in the circuit diagram. In practice, an intermediate node creates an entangled pair of
qubits, then distributes one qubit to Alice and the other qubit to Bob.

|ψ2〉 = UInit |0〉A0
⊗
( |0〉A1

|0〉B + |1〉A1
|1〉B√

2

)
(2.8.3)

After they successfully share an entangled pair of qubits, then Alice generates
entanglement between her data qubit (the first qubit) and the shared qubit between
Bob. Let UInit |0〉 as UInit |0〉 = α |0〉+ β |1〉.

|ψ3〉 = HA0CXA0,A1(α |0〉A0
+ β |1〉A1

)

( |0〉A1
|0〉B + |1〉A1

|1〉B√
2

)
= HA0

1√
2

[α |0〉 (|00〉+ |11〉) + β |1〉 (|10〉+ |01〉)]

=
1

2
[α(|000〉+ |011〉+ |100〉+ |111〉) + β(|010〉+ |001〉 − |110〉 − |101〉)]

=
1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉) + |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]

(2.8.4)

As a final step, Alice and Bob measure their qubits and apply Pauli operations
based on the measurement results. According to 2.8.4, we can estimate the third
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qubit’s measurement result from that of the first and the second qubit. There are
four possible outcomes when we measure the first and second qubits in the Z basis.

|0〉A0
|0〉A1

→ α |0〉B + β |1〉B = UInit |0〉 (2.8.5)
|0〉A0

|1〉A1
→ α |1〉B + β |0〉B = X · UInit |0〉 (2.8.6)

|1〉A0
|0〉A1

→ α |0〉B − β |1〉B = Z · UInit |0〉 (2.8.7)
|1〉A0

|1〉A1
→ α |1〉B − β |0〉B = Z ·X · UInit |0〉 (2.8.8)

From the above, we can see all possible final states include the state UInit |0〉. Bob has
to extract that information from the final state by applying proper Pauli operation(s).
Note that in this process, Alice has to tell the measurement result. That means they
can’t communicate beyond the speed of light.

00→ I · UInit |0〉 = UInit |0〉 (2.8.9)
01→ X ·X · UInit |0〉 = UInit |0〉 (2.8.10)
10→ Z · Z · UInit |0〉 = UInit |0〉 (2.8.11)
11→ X · Z · Z ·X · UInit |0〉 = UInit |0〉 (2.8.12)

Finally, Bob successfully extracts the information Alice sent. As I mentioned in the
first part of this section, we can transfer one qubit data from one place to another as
long as they share an entangled state.

2.9 Stabilizer Formalism
A stabilizer is one powerful tool to describe a specific type of quantum state. By
using stabilizers, large quantum states can easily be handled.

Let |ψ〉 be a pure state. When a unitary operation U satisfies U |ψ〉 = |ψ〉, U is a
stabilizer of |ψ〉. In other words, when |ψ〉 is an eigenvector of U with eigen value 1,
then U is a stabilizer of |ψ〉.

As the simplest example of a stabilizer, Z gate stabilize |0〉.

Z |0〉 = |0〉 ,−Z |1〉 = |1〉 (2.9.1)

This formalization can be extended to any number of qubits, and it is a useful tool for
constructing error-correcting codes for a large number of qubits. A quantum circuit
that is only composed of Clifford gates is called a stabilizer circuit. The stabilizer
circuits can be simulated with stabilizer formalism in a classical computer within
polynomial time complexity [12, 13, 14]. This theory is known as Gottesman and
Knill’s theorem proposed by Daniel Gottesman and Emanuel Knill.
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2.10 Graph state
Graph state is a highly entangled state among several or more qubits. Graph state is
also called "Resource state." This state plays a crucial role in the Measurement-Based
Quantum Computing, one alternative quantum computational model rather than the
circuit model.

It is also an essential resource for blind quantum computing [15, 16, 17] and secret
sharing [18, 19].

2.10.1 Graph Theory

First, we define a graph G = (V,E) with a series of vertices and edges. This graph
has |V | vertices. Each vertex has an index i and ith vertex can be represented by vi.
If vi and vj are connected by an edge, then we can say the conbination of them is
included in the edges E ({vi, vj} ∈ E).

One more way to describe a graph is using the "Adjacency Matrix." The adjacency
matrix is N by N matrix that only includes 0 or 1 as an element. Each column and
row corresponds to the index of the graph. This is an adjacency matrix of a graph in
Figure 2.17.

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 . (2.10.1)

0 1

23

Figure 2.17: An example of graph with only four vertices.
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In a general way, an adjacency matrix A is represented as,

Ai,j =

{
1 ({vi, vj} ∈ E)

0 (otherwise).
(2.10.2)

When the graph is undirected, the adjacency matrix is symmetric (A = AT ).

2.10.2 Representation of Graph State

Let |G〉 be a graph state. The graph state can be represented as follows.

|G〉 =
∏
{i,j}∈E

CZi,j |+〉|V | (2.10.3)

where |+〉|V | represents the number of qubits is |V | and all qubits are superposition
state. We need as much qubit as the number of vertices in the graph. Each vertex
corresponds to each qubit. To generate entanglement between vertices, we apply CZ
gates corresponding to edges in the graph.

More conveniently, we have another notation to describe a graph state. That is a
stabilizer. Let Ka be a correlation operator at vertex a ∈ V .

Ka = σaxσ
Na
z := σax

∏
b∈Na

σbz (2.10.4)

Eigenvalues to the correlation operators are all +1 for all a. The subgroup S of the
local Pauli-group P V generated by the set of correlation operators is called the graph
state’s stabilizer.

2.11 Measurement-Based Quantum Computing
Measurement-Based Quantum Computing (MBQC) is an alternative way of quantum
computing. By only measuring qubits one by one, an arbitrary quantum circuit can
be executed [20, 21].

As the first step of MBQC, it requires a resource state (so-called graph state).
In the MBQC scheme, we usually use a two-dimensional graph state. Figure 2.18
shows how the MBQC works. The measurement operations go from left to right. Z
measurement destroys the coherence, and the qubit is removed from the graph state.
To achieve two or more qubit operations, entanglements between several rows must
remain.

Based on the previous measurement results, the observer decides which basis the
next qubit is measured. After all of the qubits are measured, the observer corrects
the final state with a series of operations.
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↑ ↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑ ↑ ↑

↑

↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↑

↑

↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑ ↑ ↑ ↑

Two qubit operations

|ψ〉in

Z measured qubit

Operation Flow

|ψ〉out

Figure 2.18: Process of Measurement-Based Quantum Computing

MBQC is known as a universal quantum computation model. That means any
quantum circuits can be represented in the MBQC model.

An example of a quantum operation in MBQC is how the Hadamard gate works
in the MBQC scheme. Suppose there is a quantum state |ψ〉1 = a |0〉 + b |1〉. Add
one more qubit as a |+〉. By applying a CZ gate between them,

CZ(|ψ〉1 |+〉) = a |0〉 |+〉+ b |1〉 |−〉 . (2.11.1)

Projecting the first qubit to |0〉+ eiθ |1〉, the second qubits become,

a |+〉2 + be−iθ |−〉2 = HeiθZ/2 |ψ〉 . (2.11.2)

This results applying the Hadamard gate to the original state. If the first state was
projected onto the other state, such as |0〉 − eiθ |1〉, the second qubit becomes,

a |+〉2 − be
−iθ |1〉2 = XHeiθZ/2 |ψ〉 . (2.11.3)

In this case, additional X operation is applied to the first state |ψ〉. This X must be
removed at the final state.

2.12 Quantum State Verification
Quantum state verification is a statistical approach to verify the results of quantum
computing and quantum networking. In the quantum networking scheme, multiple
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quantum nodes are working together. Under that circumstance, each quantum com-
puter has to verify incoming and outgoing states to trust other quantum computers.
Many protocols have been proposed in the last decades.

Ultimately, quantum tomography can check if a quantum state is completely the
same as the ideal state. The quantum tomography protocol can estimate an un-
known quantum state with plenty of measurement. However, it requires substantial
quantum resources that are performed measurement. Generally speaking, quantum
tomography requires exponential quantum resources.

As alternative ways to verify a quantum state, there are several verification ap-
proaches with a reasonable amount of quantum resources [22, 23, 24, 25]. More
specifically, state verification for a graph state can be done in efficient ways [26, 27].

2.13 Quantum Errors
"Error" or "Noise" in quantum computing is one dominant problem to solve for
practical usage. A quantum state is fragile to interaction with the outer world.
Quantum noise affects the result of quantum computation. In the worst case, there
are only random output comes out as a result.

There are many types of errors on the quantum computer. One prominent noise
on the NISQ device is a gate error, in which a quantum computer acts quantum gates
on a qubit. Other than that, there are many types of errors such as measurement
error, T1 and T2 error, photon loss error.

As an example of a quantum error in one qubit system, assume a mixed state ρ2
of |0〉 and |1〉. The target state assumed to be a measurement output is |0〉.

ρ2 = p |0〉 〈0|+ (1− p) |1〉 〈1| =
(
p 0
0 (1− p)

)
(2.13.1)

where p is a proportion of |0〉. When p = 1
2
, that state is called "completely mixed"

state. In general, N qubit mixed state is represented as,

ρN =
N∑
i

pi |ψi〉 〈ψi| (2.13.2)

where pi is a proportion of i th state. When all pi = 1
N
, it is N qubit mixed state.

Quantum Error Correction (QEC) allows us to overcome those noises and make
quantum computers a practical computer. [28]

2.14 Quantum Internet and Networking
The quantum Internet [29, 30] is, along with the universal quantum computer [31],
one of the “killer applications” of quantum technologies.
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One of the primary challenges is robust and coherent communication between
distant quantum computers in the network. Classical network nodes communicate
via strong light signals that propagate through optical fibers and become attenuated in
the process. These signal attenuation can be relatively easily mitigated by inspecting
the classical signal and amplifying it.

Quantum nodes communicate via an exchange of much weaker signals, which are
often at the single-photon level. Photon loss in optical fibers becomes an extremely
pertinent problem as well. Furthermore, in order for the whole network to preserve
its quantum functionality, the individual signal photons must retain their coherent
properties. Propagating photons lose these coherent properties due to decoherence.
Direct amplification of these weak signals becomes undesirable because of the low
signal-to-noise ratio of the boosted signal [32]. Unlike in the classical case, it is
impossible to copy and resend these photons due to the quantum no-cloning theorem
[33, 34, 35, 36], which states that it is forbidden to clone an unknown quantum state
deterministically.

Quantum repeaters are designed to overcome all of these problems [37, 38, 30, 39].
Rather than boosting the signal directly or attempting to copy it, they work on the
principle of entanglement swapping [40, 41]. Consider a scenario where two nodes of a
quantum network, node A, and node B, wish to establish an entangled pair of qubits.
Sending one of the qubits of the entangled pair from A to B would result in a final
state with low fidelity that would not be suitable for further information processing
tasks. A better solution is to introduce an intermediate repeater node C that shares a
maximally entangled state with node A, e.g. |Φ+〉A,C1 = (|00〉+|11〉)/

√
2, and another

maximally entangled state with node B, |Φ+〉C2,B. Repeater node C then measures
its two qubits on a Bell basis, which transfers the entanglement to nodes A and B.
Depending on the outcome of the measurement, which is communicated classically
to A and B, the end nodes apply local correction operations in order to establish
a maximally entangled state |Φ+〉A,B. Traditionally, quantum repeaters have been
designed to rely on quantum memories in order to store the qubits before they are
measured in the Bell basis [42, 43]. Recent developments have shown that this is not a
fundamental requirement and that all-photonic quantum repeaters [44, 45, 46, 47, 48]
offer an attractive memory-less alternative.

2.15 Graph Algorithms
The graph has plenty of applications, such as community detections, the structure
of proteins, navigations on the map. Generally speaking, graph data is large and
difficult to handle. Thus there have been many algorithms developed to make graph
processing efficient. In this project, three graph processing algorithms were applied
to the initial graph state.
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2.15.1 Stoer Wagner Algorithm

The Store Wagner algorithm was proposed by Mechthild Stoer and Frank Wagner
in 1997 [49]. This algorithm aims to find the set of edges to cut a weighted graph
with minimum weights. When the target graph is not a weighted graph, it finds the
minimum number of edges to cut the graph into two parts.

Figure 2.19: The stoer-wagner finds minimum weight cut in a graph.

Let G = (V,E,w) be a weighted and undirected graph with a series of vertices.
It has a series of edges with some weights. The procedure of this algorithm can be
decomposed into two subroutines. One is a minimum cut phase subroutine shown in
Algorithm 1. What this subroutine does here is finding a minimum cut for cutting

Algorithm 1 Minimum Cut Phase Subroutine
Input: G, w, a

a can be an any vertex in V
1: A = {a}, (a ∈ V )
2: while A 6= V do
3: Add the most tightly connected vertex to A.
4: Store the cut-of-the-phase and shrink G by merging the two vertices added last
5: end while

out one vertex from an entire graph. "The most tightly connected vertex" is a vertex
with more weight than the other vertices, which is one hop distance from the list of
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vertices A, but not included A. An example of the most tightly connected vertex is
shown in Figure 2.20.

Figure 2.20: An example of "the most tightly connected vertex". Suppose w({vi, vj})
is the weight on the edge {vi, vj}. Vertices 1, 2, 5 are already stored in searched list
A. The weights on the edges w({2, 3}) = 3, w({5, 6}) = 3, w({2, 6}) = 5. The node
6 has a weight 5 + 3 = 8 and node 3 has a weight 3 in total. In this case, the node 6
is the most connected vertex in this graph.

The second subroutine finds a global minimum cut of a graph G with the subrou-
tine Algorithm 1.

Algorithm 2 Minimum Cut Subroutine
Input: G, w, a
1: while |V | > 1 do
2: MinimumCutPhase(G, w, a) Shown in Algorithm 1
3: if the cut-of-the-phase is lighter than the current minimum cut then
4: store the cut-of-the-phase as the current minimum cut
5: end if
6: end while

These pseudo-code are quoted from [49, 50]. The time complexity of this algorithm
is O(|V | |E|+ |V |2 log |V |) where |V | denotes the number of vertices and |E| denotes
the number of edges in a graph.
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2.15.2 Kernighan Lin Algorithm

The Kernighan Lin algorithm was proposed by B. W. Kernighan and S. Lin in
1970 [51]. This algorithm is used for designing classical circuits and components
in VLSI[52]. This algorithm allows us to partition a graph into two parts with a
balanced number of vertices. This proportion can be extended to an arbitrary ratio.
When this algorithm partitions a graph, it tries to find the minimum edge cut under
that proportion.

The time complexity of this algorithm is O(|V |2 log |V |).

Algorithm 3 Kernighan Lin Algorithm from [53]
Input: G(V,E)
1: Divide G into two subgraphs A, B of equal size arbitrarily.
2: while There are vertices do
3: Select ai ∈ A, bi ∈ B such that reducing the cost (the sum of weights of

partitions).
4: Swap ai, bi
5: Let Ci be the cost of partition after swapping ai, bi
6: end while
7: Return (A’, B’) corresponding to the smallest C’.

Figure 2.21: The stoer-wagner finds minimum weight cut in a graph.
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2.15.3 Densest-k subgraph search Algorithm

The densest-k subgraph problem is the problem that finds the densest-k vertices sub-
graph induced by a graph. This problem is known as an NP-hard problem. There are
several algorithms to solve this problem with approximations. However, no approxi-
mation exists within the multiplicative error. The approach this paper use is [54].
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Chapter 3

Problem Definition and Proposal

Distributed Quantum Computing (DQC) is one promising platform in quantum com-
puting. In the DQC scheme, quantum processors are connected with quantum inter-
net and working together. This scheme allows quantum computers to enhance their
computational power [55, 56, 57]. Several architectures for distributed quantum com-
puting have been proposed in the different quantum systems [56, 58, 59, 60, 61, 62].

Measurement-based quantum computing with graph states is one candidate for
distributed quantum computing -sharing a large graph state over the distributed
systems and measuring qubits one by one to run a quantum circuit [63]. Generally
speaking, the size of the graph state corresponds to the size of the quantum circuit
to be embedded.

However, there are many technical difficulties to be solved. Unlike classical dis-
tributed systems, there are some constraints derived from the No-cloning theorem and
Entanglement. In the classical system, data and programs can be copied without any
considerations. However, no one can copy an unknown quantum state because of the
no-cloning theorem. In addition to that, a quantum state is so fragile that generating
remote entanglements is one of the challenging tasks in the quantum networking field.

There are several approaches to create a graph state efficiently. [64, 65] show
efficient ways of preparing graph states on the local devices. In these papers, the
main aim is to make a graph state with fewer operations on the quantum circuit.
Things that need caring in that scheme are the quality of qubits in a local device.
However, in the DQC protocol, quantum link properties have to be taken into account.

To make the DQC protocol possible, controlling resources over the distributed
systems is an important task. There are several related works for distributing graph
states. In [66, 67], authors showed efficient distribution way of graph states in the
ideal situation. Their approaches are based on local complementations that transform
one graph state into the other LC equivalent graph state with Pauli measurements.

As a problem definition, the problem to solve in this project is how to allocate
resources over noisy quantum networks efficiently. This project focuses on a graph
state that is one particular quantum state used in Measurement-Based Quantum
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Computing. Figure 3.1 is a simple expression of this problem definition. We have
several quantum computers in the same network or even outside of the network.
However, each quantum computer and quantum link have different properties such
as error rate, qubit capacity. This project aims to establish a scalable protocol that
deals with those processes taking device properties into considerations.

Remote entanglements

Figure 3.1: This diagram is a simple explanation of the problem definition. A graph
at the top of this picture represents the final graph state we want to create. There
are two devices connected with a noisy quantum link. In general, different quantum
computers and links have different error rates. Considering those error properties, we
have to assign qubits properly to maximize the entire performance.

The proposal is composed of two steps. The first step is the classical communica-
tion step to share the device information. The second step is the quantum computa-
tion step that operates quantum gates on the device and over the quantum links.

Figure 3.2 shows an example quantum network topology. There are two types
of quantum computers. One is called initiator that starts the entire process of this
algorithm. The other is called responder that responds to the initiator’s request.
They are connected with both quantum and classical links.

First of all, the initiator decides the size and shape of the graph state. It depends
on what application it needs to run on that. For example, measurement-based quan-
tum computing requires a two-dimensional lattice graph state. Here, let G = (V,E)
be the target state’s graph with a series of vertices V and edges E. The total number
of qubits required is N = |V |.
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Node BInitiator

Node A

Node C

Responders

Figure 3.2: This is an example of network topology. The left device is initiator that
sends requests to responders on the right-hand side.

First, the initiator sends requests to one-hop neighbor nodes to get neighbor infor-
mation, as shown in Figure 3.2. In this process, the initiator requests the number of
qubits available for this protocol, the average error rate on those qubits’ error rates,
and average errors on the quantum link between them using benchmarking meth-
ods. Note that each responder has to know link errors beforehand at this protocol.
As types of errors, this protocol is only assuming bit-flip error and phase-flip error.
However, other types of error can be used as long as it’s quantifiable.

Second, the responders return responses to the initiator with attaching device
information. At this point, if a responder is busy with other tasks or not working, it
returns status as busy, and it’s eliminated from the following processes. If a responder
device is available for this protocol, it returns how many qubits it can provide and
an average error rate of qubits and links. Note that, in practice, the initiator and
responders must trust each other because responders can give the initiator wrong
information. It causes spoiling the entire process.

Finally, the initiator divides workloads based on those responses. As the first step
of this process, the initiator sums up the available number of qubits in total. If this
value is not enough for the required number of qubits, the initiator tries to send the
request again after some time durations. In this process, the initiator uses a decision
tree shown in Figure 3.8. There are three policies to follow when the initiator divide
graph states into several parts 3.8.

Policy 1: Use better devices with lower link error rates This policy prioritizes
responders. A responder that has lower error qubits is assigned a relatively large
graph state. Let s be the possible combination for dividing workloads. The priority
for each setting is calculated with the cost Ci∈s,

Ci = α

∑Ni
t εt
Ni

+ βεi,j (3.0.1)
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Average error rate of links

Figure 3.3: Send Response

where εi,j is the average link error given by link tomography and α, β are constant
value for device error and link error. Note that the initiator can choose what kind
of error should be cared for in the allocation process. That means arbitrary error
properties can be included as long as they are measurable.

The initiator generates local topologies based on available devices and picks up
the best topology from possible local topologies as shown in 3.4. Note that this is
just an estimation of the quality of the final state. This cost function doesn’t include
any aspects of the number of qubits. That means the allocation could be biased, and
redundant remote entanglements could appear. To avoid this, the initiator needs to
do post-evaluation to verify if this allocation is the best in the possible allocations.

Policy 2: Fewer remote entanglements This policy aims to reduce the number of
remote entanglements over a quantum link. Generally speaking, maintaining entan-
glements over the remote devices is much harder than that of local entanglements.
That is because the error rate of the quantum link is much higher, and qubits could be
lost while transferring. To reduce the number of remote entanglements, this allocator
takes two graph algorithms. One is the Stoer-Wagner algorithm, and the other is the
Kernighan-Lin algorithm.

The Stoer-Wagner algorithm finds the minimum weight of edges that divide a
graph into two separated subgraphs. When the target graph is not a weighted graph
and undirected, the minimum weight directly corresponds to the minimum number
of edges. The allocation process with the Stoer-Wagner algorithm is shown in Al-
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Node BInitiator

Node A

Node C

20
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Figure 3.4: This is an example cost calculation. Suppose the initiator tries to generate
a 20 by 20 lattice graph state. The initiator requires 400 qubits in total. At this point,
no device can handle 400 qubits only in their local processors. Let {i} be the initiator
device and {a, b, c} be the responders. All possible device combinations are {{i}, {a},
{b}, {c}, {i, a}, {i, b}, {i, c}, {a, b}, {a, c}, {b, c}, {i, a, b}, {i, a, c}, {i, b, c}, {a, b, c},
{i, a, b, c}}. However, several situations can be eliminated because of the number of
qubits and connectivity of devices. In this case, the possible situations that needs
considering are {{i, a}, {i, b}, {i, c}, {i, a, b}, {i, a, c}, {i, b, c}, {i, a, b, c}}. Costs for
these settings with α = 1, β = 1 are {0.034, 0.015, 0.102, 0.048, 0.135, 0.116, 0.149}.
From this, a combination {i, b} is picked up first and {i, a} second.

gorithm 4. Let G = (V,E) be a target graph and L = (d0, d1, ..., dnl) be quantum
devices in a local topology chosen by the allocator. nl is the number of devices in
the chosen local topology. The output of this procedure is a series of subgraphs for
each device S = (G′1, G

′
2, ..., G

′
nl

), and the cost corresponding to that setting. For
convenience, Let G′ be a sub-graph for the next round.

First, the allocator cuts the target graph G into two induced subgraphs G′1, G′2
and allocates the first half of the subgraph G′1 to the first quantum node.

Second, the allocator cuts the left half of the subgraph again and assigns the first
half. The allocator repeats this process in a greedy manner shown in Figure 3.5.

By repeating this process for all possible local topology, the allocator prepares
all possible settings. After subgraphs are prepared, the allocator calculates the costs
for those subgraphs again. This time, the allocator calculates the cost based on the
subgraph’s density and the number of links between them. Let j be the neighbor
quantum nodes of i th device. The cost function to calculate the final cost (Cf ) is,

Cf (S,L) = γ
∑
l∈L

D(Sl) · εl + δ
∑

{l,m}∈L,m∈neig(l)

x{l,m} · ε{l,m} (3.0.2)

where D(Sl) is the density of subgraph Sl generated in device l and x{l,m} is the
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the number of links between l th and m th subgraphs. εl, ε{l,m} are average error
rates of device and link respectively, and γ and δ are constants. This algorithm can
find a minimum cut in polynomial time, but this minimum cut is sometimes not a
good choice. That is because the size of the subgraph can exceed the capacity of the
device. For these reasons, the second option is the Kernighan-Lin graph partitioning
algorithm.

Algorithm 4 Graph allocation based on Stoer-Wagner algorithm
Input: G, L Target graph G and local topology L
Output: S, C List of subgraphs S and cost C

Initialisation :
1: G′ = G, S = {}

Loop for devices in local topology L :
2: for i = 1 to nl do
3: G′1, G

′
2 = Stoer-Wagner(G′)

Add as the i-th subgraph
4: S[i] = G′1
5: G′ = G′2
6: end for

Cost function shown in Eq.3.0.2
7: C = Cost(S, L)
8: return S, C

Kernighan-Lin graph partition algorithm aims to partition a graph into two sub-
graphs in specific proportion. Initially, it decomposes a graph into balanced two
subgraphs in terms of the number of vertices. However, it can be extended to an
arbitrary ratio. This algorithm takes an initial partition that tells the allocator the
number of qubits in output subgraphs in this protocol.

The process of this allocation is shown in 5. Input arguments G,L are the same
as the previous allocation. In this allocation, the allocator compares the cases with
different partitions. Let Ni be the number of qubits in the device i, and Pi be
the partition that tells the allocator the number of vertices in one subgraph. The
allocator searches for several possible cases within the number of qubits in the device
by incrementing the number of qubits assigned for the first device.

First, the allocator starts searching for the best allocation with a different number
of qubits. As an example, Figure 3.6 shows the procedure of Kernighan Lin allocation.
The allocator searches for several possible cases within the number of qubits in the
device by incrementing the number of qubits assigned for the first device.

Policy 3: Proper proportion of densities The final policy is about the density of the
subgraphs. When the subgraph is dense, the number of operations gets large. This
policy can be effective when the link’s error rate is reasonably low, and the device
error is dominant. As an example of this situation, suppose a high-quality device and
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Figure 3.5: Resource allocation based on Stoer-Wagner algorithm. The allocator
chooses one local topology and applies the Stoer-Wagner algorithm to it. The alloca-
tor assigns the first subgraph to the first node in the local topology and applies the
Stoer-Wagner again. The allocator repeats this process until all nodes are assigned
subgraphs.

a low-quality device connected by a high-quality link. Under this circumstance, if
the low-quality device undertakes the dense subgraph, the final state would be noisy.
From this point, the allocator partitions a target graph based on the density. Note
that there are several algorithms to look up the densest subgraphs. However, no
algorithm can approximate it with the multiplicative error so far.

The method to divide a graph based on subgraph’s density, this allocator employed
a method in [54].
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Algorithm 5 Graph allocation based on Kernighan Lin algorithm
Input: G, L Target graph G and local topology L
Output: S, C List of subgraphs S and cost C

Initialisation :
1: G′ = G, S = {}

Loop for devices in local topology
2: for i = 1 to nl do
3: CT = {inf}, ST = {} Temporary cost list and temporary subgraphs

Loop for different partitions
4: for j = 1 to Ni do
5: Pi = {{0, ..., j}, {j, ..., Ni}} Two different paritions
6: G′1, G

′
2 = Kernighan-Lin(G′, Pi)

7: Cj = Cost({G′1, G′2})
8: if Cj ≤ min(CT ) then
9: ST [j] = {G′1, G′2}

10: end if
11: CT [j] = Cj
12: end for

Take the final (best) subgraph
13: G′1, G

′
2 = last(ST ) Last element must be best in ST

14: S [i] = G′1
Update subgraph with left half of subgraph G′2

15: G′ = G′2
16: end for
17: C = Cost(S,L)
18: return S, C
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Figure 3.6: The procedure of Kernighan-Lin based allocation. Several partitions can
be considered as many as the number of vertices. By changing the partitions, the
allocator finds the best partition. The allocator repeats this process for all possible
partitions.
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Algorithm 6 Graph allocation based on densest-k subgraph search based algorithm
Input: G, L Target graph G and local topology L
Output: S, C List of subgraphs S and cost C

Initialize a temporary subgraph G′ with target graph and S as empty list.
1: G′ = G, S = {}

Loop for devices in the local topology L
2: for i = 0 to nl do
3: CT = {inf}, ST = {} Temporary cost list and list for subgraph.

Loop for possible subgraphs with different number of vertices.
4: for j = 0 to Ni do
5: G′1, G

′
2 = DkS(G′) Densest-k subgraph search

6: Cj = Cost({G′1, G′2})
7: if Cj ≤ min(CT ) then
8: ST [j] = {G′1, G′2}
9: end if

10: CT [j] = Cj
11: end for

Take the final (best) subgraph
12: G′1, G

′
2 = last(ST )

13: S [i] = G′1
Update subgraph with left half of subgraph G′2

14: G′ = G′2
15: end for
16: C = Cost(S,L)
17: return S, C
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Figure 3.7: The procedure of the densest-k subgraph density based allocation. The
allocator finds several candidates for the first subgraph. The allocator repeats this
process for possible subgraphs.
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Chapter 4

Evaluation and Experiments

4.1 Evaluation
To evaluate if this allocation method is good, setting three criteria.

Quality: The quality of the final state based on the graph state verification
method

To handle more than hundreds of qubits, a straightforward way to evaluate quan-
tum state such as quantum tomography is not realistic in classical simulation. Instead
of using such direct methods, using the graph state verification method as an evalu-
ation method shown in 2.12. The procedure to evaluate a graph state is as follows.

First, prepare stabilizer generators according to the shape of the target state. As
an example, suppose G is a graph shown in 4.1.

0

3

1

2

Figure 4.1: Example of Stabilizer generators

Second, generate the graph state in local and global according to the subgraphs
generated by the allocator. Note that, for simplicity, the simulator only cares about
bit-flip and phase-flip errors.

Finally, measure the qubits based on the stabilizer generators prepared in the
previous step. According to the measurement results, the allocator decides if the final
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state is acceptable as the graph state. The simulator gets mi = 0 or mi = 1 as the
measurement result when it measures i-th qubit. Let N be the number of qubits
in the final state and Sg = 〈g0, g1, ..., gN〉 be the stabilizer generators for that graph
state. When the measurement results satisfy,∏

s∈Sg

(−1)mi = 1 (4.1.1)

the simulation accepts this as a graph state. Otherwise, the simulation rejects this
graph state. The acceptance rate in one trial Racc is,

Racc =
Ns

N
(4.1.2)

where Ns is the number of measurements that satisfies 4.1.1. The total acceptance
rate Rt can be calculated by taking the average of hundreds of t trials.

Rt =

∑
iR

i
acc

t
(4.1.3)

When the final state is noisy, the value goes 0.5 (random output). Note that this
is not a fidelity of the final state, so that the state can’t be qualified with only that
value. However, the final states can be compared in terms of that value.

Scalability: How fast the entire complexity grows. The scalability of the system
is one dominant aspect of practical use. One way to evaluate the scalability of the
system is the time complexity that tells us how hard the entire problem is.

Applicability: Constraints in practical use Finally, for practical use, some con-
straints can be considered.

4.2 Experiments
Several experiments can be set for investigating the performance of this protocol.
First, by using different network topologies and shapes of graph state, investigate the
quality of the final state.
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Experiments Topology Target Graph
Experiment 1 Two node topology (Figure 4.3) 10× 10 lattice (100 qubits)
Experiment 2 Two node topology (Figure 4.3) 30× 30 lattice (900 qubits)
Experiment 3 Two node topology (Figure 4.3) 60 qubits random graph state [68]
Experiment 4 Four node topology (Figure 4.10) 10× 10 lattice (100 qubits)
Experiment 5 Four node topology (Figure 4.10) 4× 26 (104) brick
Experiment 6 Six node topology (Figure 4.15) 6× 39 (234) brick

Table 4.1: Table of experiments with different network topology and different graph
states. Figure 4.2 shows example of target state called brick state.

Figure 4.2: An example of 4 × 13 (52 qubit) brick state. This state can be used for
blind quantum computation. The simplest graph state for universal measurement
based quantum computing.
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4.3 Results

4.3.1 Experiment 1: 100 qubits lattice state with two quantum
processors

The first experiment is a toy experiment with two quantum devices that try to gen-
erate 100 qubits lattice state over the noisy quantum link and processors shown in
Figure 4.3.

Node1 Node2

Figure 4.3: The simplest topology that has two quantum computers with one link.
For the toy model of this simulation, both quantum computer have specific amount
of qubits.

Figure 4.4 shows the quality transition over the different link errors (bit-flip and
phase-flip) from 0 to 0.1 (X-axis). One data plot is the average of 100 trials, and
error bars are generated by the standard deviations (±1σ range). As the error rate
is getting large, the difference in qualities becomes large (The difference between the
two values is almost 0.1 when the error rates are α = 0.1).
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Figure 4.4: 10×10 (100 qubit) lattice graph state over the two quantum computers
shown in 4.3 with 80 qubits each n1 = 80, n2 = 80. The blue dots represents the
transition of the quality of graph state with this allocation method. The orange dots
represents random allocation. By varying the error rate ε of 4.3, transition of quality
can be seen in this plot.

Figure 4.5: Quality transitions in small errors (0 to 0.02). The difference of quality
between two allocation is remarkable even in the small error cases.
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4.3.2 Experiment 2: 900 qubits lattice state with two quantum
processors

Figure 4.6: 30×30 (900 qubit) lattice graph state over the two quantum computers
shown in 4.3.

Figure 4.7: A magnified plot in small error rate cases. The orange arrows represents
how much better the quality of this allocation is comparing to random allocation.

The second experiment is generating a 900 qubit lattice state with a two-node
topology shown in Figure 4.3. The results are shown in Figure 4.6 and Figure 4.7. In
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this experiment, the CZ gate’s error rate varies from 0 to 0.03 (3%), and each node
has small bit and phase errors on a single-qubit gate. This allocation method keeps
quality between 0.99 to 1.0. However, in the small error case (0 to 0.002), random
allocation is good enough to allocate qubits.

4.3.3 Experiment 3: 60 qubits random graph state with two
quantum processors

Figure 4.8: 60 qubit random sparse graph state over the two quantum computers
shown in 4.3. As well as the previous result, the blue (red) dots represents this
approach (random approach) respectively.

For the next experiment, the target state is a random graph state with 60 qubits.
The type of random graph is called Erdős–Rényi model shown in [68] This result is
derived from an experiment with a 60 vertices sparse random graph (the density of the
target graph is 0.1). Figure 4.8 shows the difference of quality between this allocation
method and the random allocation. Figure 4.9 highlights how much different they
are. Comparing to the previous lattice experiments, the quality of this allocation gets
lower rapidly. However, this allocation still outperforms the random allocation as the
error rate on the link gets large.
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Figure 4.9: This plot shows how different the quality of the final state between this
allocation and random allocation. The blue arrow shows this allocation method can
not reach the quality of the random allocation’s. On the other hand, the orange arrow
means this allocation method exceed random allocation.

49



4.3.4 Experiment 4: 100 qubits lattice state with four quan-
tum processors

Node1

Node2

Node3

Node4

Figure 4.10: An example network topology with four small quantum computers with
fixed error rate. µεb and µεp are the average bit-flip and phase-flip error rates respec-
tively over the all qubits in a device and link.

The next experiment is on the four quantum processors shown in Figure 4.10 with
30 qubits each (120 qubits in total). Those four quantum processors try to generate a
100 qubits lattice state. The result is shown in Figure 4.11. In this case, the quality
drops rapidly in both allocation method, but the random allocation outperforms this
allocation. One possible reason that the random allocation exceeds this allocation
method would be that this allocation method tries to allocate qubits greedily and
make quantum computers generate much more remote entanglements.
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Figure 4.11: The result of experiment 4. The transitions of quality over the different
bit and phase errors on the quantum link. Unlike the previous experiments, the
quality of random allocation exceeds that of the random allocation in most cases.

Figure 4.12: Highlighted visualization of the difference between two allocation meth-
ods. In this case, the random allocation exceeds in terms of quality.
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4.3.5 Experiment 5: 104 qubits brick state with four quantum
processors

Figure 4.13: 4×26 (104 qubits) brick state on the network topology 4.10. The error
bars are generated by standard deviations in 100 trials.

Figure 4.14: This plot shows quality differences of 4.13. When the error rate on the
quantum link gets large, this allocation performs better than random allocation.

As a next experiment, the target state is different from previous experiments.
The state is known as the "Brick state" shown in Figure 4.2. The corresponding
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results are shown in Figure 4.13 and Figure 4.14. The size of the target brick state is
4× 26 = 104 qubits. The dispersion of each data point is larger than that of previous
results’.

4.3.6 Experiment 6: Six node topology and 234 qubits brick
state.

For the final experiment, the number of quantum processors is larger than that of
previous experiments shown in Figure 4.15. In this experiment, each quantum com-
puter has small local gate errors (randomly generated from 0 to 0.001). The results
are shown in Figure 4.16 and Figure 4.17

Figure 4.15: A network topology that contains six quantum computers. The same as
the previous network topologies, all of them are connected by noisy links.
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Figure 4.16: The result of 6 × 39 (234) brick state on Figure 4.15 with six quantum
processors.

Figure 4.17: The highlighted plot of Figure 4.16. In this Figure, the difference between
the two allocation methods is clearer than the previous results. When the error rate
gets large, the difference gets large as well.
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4.3.7 Scalability

The scalability can be measured by the time complexity of the entire process. Let
G = (V,E) be the target graph, and T = (D,C) be the network topology. V and
E represents the number of vertices and edges in the target graph, respectively. The
same as the target graph, D represents the devices in the network topology, and C
indicates the connections between devices. The total number of qubits N is N = |V |.
The allocator can parallelize three allocations in the actual allocation phase. The
bottleneck of the entire process can be the most complex allocation method, the
densest-k subgraph search allocation. In this process, the densest-k subgraph search
algorithm is the most complex allocation.

The time complexity can be decomposed into three parts. The first part is the
number of local topologies candidates L, and the second part is the subgraph gener-
ation S. The complexity of the entire process is O(LS). A set of subgraphs and cost
can be considered for the number of possible local topologies.

There are two options for the local topology generation L. The first option is
searching for all possible candidates that satisfy the number of qubits. The other
option is cutting off with pre-calculated cost and regulate the number of candidates.
The worst-case can be L = O(nl!) where nl is the number of devices in a local topol-
ogy (nl = |D|). This is not practical in a large network topology. However, by
setting a threshold for pre-calculated cost and the number of candidates, this could
be mathtcalL = O(1) where 1 a constant value. The strategy depends on how large
the target graph and network topology are. As long as their size is reasonably small,
all possible combinations can be calculated easily. The second part is the subgraph
generation part. S represents the complexity of the subroutines of graph decompo-
sition methods. If the allocator takes the Stoer-Wagner algorithm or Kernighan-Lin
algorithm, S is O(|V ||E| + |V |2 log |V |) and O(|V |2 log |V |). However, in the case
that the allocator chooses the densest-k subgraph algorithm, this part is exponen-
tially hard in multiplicative errors. Thus the allocator would have to avoid applying
the densest-k subgraph search in terms of the overhead of the calculation in complex
cases.
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Chapter 5

Conclusion

This chapter concludes this paper and gives the future direction of this project. The
aim of this paper was to establish an efficient resource allocation method for dis-
tributed quantum computing (DQC). This paper focused on generating graph state
over distributed quantum computers for measurement-based distributed quantum
computing. The key ideas for approaching that problem are three different graph al-
gorithms, which allow us to make the allocation process flexible for any input graphs.

For the evaluation of this approach, several experiments were set, and qualities can
be compared between the different allocation methods. In cases with small network
topology and relatively large graph state, the allocation methods outperformed naive
random resource allocation in terms of the quality of the final state. When the
number of nodes in the network is large, the time complexity of the entire process
would be large enough not to be able to handle. That because the allocator tries to
investigate every possible local topology induced by the whole network topology. The
solution to this problem is setting a threshold for the initial costs used to prioritize
local topologies. This threshold can reduce the search space and prevents exploding
time complexity.

As the future direction of this project, more detailed investigations can be con-
sidered. The simulator in this paper only applies bit-flip and phase-flip errors. More
complex errors can be considered in a practical situation. As the next step of the
protocol design is taking communication delay into account. Communication delay
is also one dominant property that affects the quality of the quantum state.

This paper only showed the allocation of resources for graph state. However, in
actual measurement-based quantum computing, the operations must be embedded in
a graph state with measurements. This should be done by a quantum compiler in
the distributed systems. This is still an open question of how to compile distributed
quantum circuits efficiently in realistic situations.
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