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Abstract: we have developed a new network coding protocol for repeater networks based on measurement-based quantum computing (MQNC), and studied its behavior using Monte-Carlo simulation under
noisy conditions, comparing it with buffer-space multiplexing using step-by-step and simultaneous entanglement swapping (ES and ES p), and quantum network coding (QNC). For MQNC, we have found that the
resulting entangled pairs’ joint fidelity drops below 50% when the accuracy of local operations is under 98.9%, assuming that all initial resources across quantum repeaters have a fixed fidelity of 98%. Overall, our
protocol showed substantially higher error tolerance compared to QNC and similar to ES but not as strong as ES_p.

1. Our protocol

Our protocol protocol, measurement-based quantum network coding (MQNC), has

achieved a 56.5% reduction of circuit depth from QNC (see 2.2) by exploiting

measurement-based quantum computing.

Measurement-based QNC for Repeater Networks (MQNC)
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3. Main Result

Our protocol is evaluated under noisy conditions using Monte-Carlo simulation with various error sources (initial
resource error, memory error, gate error and measurement error), and compared with quantum network coding (QNC)
and buffer-space multiplexing using entanglement swapping (BSM).

Error propagation throughout the each

circuit is tracked classically Impact of initial resource error to output joint fidelity

Rough Encoding Procedure:

Step 1 — Initialize entangled resources across quantum repeaters
Step 2 — Locally connect all qubits using CZ gate, and remove all

unwanted qubits using Y measurements to shape a butterfly network
Step 3 — Apply X measurements to the qubits at the bottleneck to
create 2 crossing-over entanglements

Characteristics of protocols
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MQNC| QNC | ES | ES p ;

# of qubits 3
(# of entanglements) 14 14 12 12 4
(7) (7) | (6) | (6) )

# of single qubit gates 6
(Byproduct operations) 14 16 12 8 7
(14) | (11) | (8) | (4) | s

# of two qubit gates 8 8 4 4 9
# of measurements 10 10 8 4 |10
Circuit depth 10 23 12 6 |1
KQ 140 322 144 72 |12
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Circuit for MQNC
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Errors on initial resources and gate operations

(initial resources, memories, single and two-qubit gates, measurements)

Parameter settings:

1. Initial resource fidelity: 98% Impact of local operation errors to output fidelity
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Network coding is an important technique for alleviating bottlenecks in networks to improve the 7800, 06 10 0:6
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The task of network coding is to transmit the information X e{0,1} Y € {0,1} z [ ‘ § X ‘y — Y X
bit X from S1to t2, and Y from S2 to t1 simultaneously [1]. X 1 ' 7 X '/
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2.2 Quantum Network Coding

Quantum Network Coding for Repeater Networks (QNC)

Recent studies of network coding have extended to quantum information [2-4].

QNC is a network coding technique for quantum communication over repeater networks.
Its main role is to create two diagonally placed entanglements over a butterfly network [5, 6].

QNC circuit
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4.Conclusion

In general, we see that our protocol showed a substantial improvement of error tolerance compared to
QNC. Depending on the situation, MQNC is slightly worse or better than ES. ES_p is in general stronger than
other protocols, however, one should be reminded that ES and ES_p requires an extra cycle to complete the
whole process. To conclude, MQNC is more practical than QNC, but the choice of MQNC or ES_p is still
discussable. If network resources are abundant or if slower communication is permitted, ES_p may be more
useful. In contrast, MQNC is more practical if higher communication speed is required or if resource

contention is critical and needs to be resolved.
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