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Abstract. We present the design of a reversible ternary carry-ripple adder suitable for use with qutrits. Our design
is based on the binary reversible adder of Vedral, Barenco and Ekert, and uses 3n + 1 qutrits to add two n-trit
numbers, with carry in and carry out. We assume a “rotor” gate as our basic gate.

1 Introduction

Qutrits, ternary analogs to binary qubits, have been pro-
posed for quantum communication, including quantum key
distribution (QKD), and have been recognized as giving good
spatial density for information storage [1, 2, 3]. Qutrits are
three-state elementary quantum systems, defined by a basis
set of three vectors. Much as qubits are defined using a basis
set commonly written as |0〉 and |1〉, we define the basis set
for ternary arithmetic to be |0〉, |1〉, and |2〉.

For any sort of complex computation on qutrits, we ex-
pect arithmetic subroutines to be an important component.
Building blocks, including a full adder, have been defined [4],
but larger, more complete circuits are also necessary. There-
fore, we have designed a reversible ternary adder, based on
the structure of the VBE carry-ripple adder circuit by Vedral,
Barenco and Ekert [5]. Our circuit involves no uniquely quan-
tum operations, and would be usable in a classical ternary
logic context, which has a long if not exactly mainstream his-
tory [6, 7].

2 Concepts and Building Blocks

Our goal is to make a circuit that takes two n-qutrit numbers
a and b and outputs a and a+ b. In the following, we write the
state of an n-qutrit register as a = an−13

n−1 + an−23
n−2 +

... + a13 + a0. Here, a0 is the lowest-order qutrit, and an−1

is the highest-order qutrit. Because our work is independent
of the quantum nature of the trits, we dispense with the ket
notation for the rest of this paper.
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Figure 1: The rotor gate.

We need a reversible ternary gate as our basic logic gate.
We define a gate R we call the rotor. It takes 0 → 1, 1 → 2,
and 2 → 0. Applying this gate three times to any trit will bring
its state back to its original position. The unitary transform
and graphical symbol for R are shown in Figure 1.

We also need a two-qutrit gate. The C-R gate, or control-R
gate, rotates the second qutrit (the target qutrit) only if the first
qutrit (the control qutrit) is 2, as shown in Figure 2. Similarly,
the C-C-R gate rotates the third qutrit (the target qutrit) only
if both of the control qutrits are 2.

2.1 SUM gate

The purpose of the ternary SUM gate, or block of gates, is
the same as the purpose of the VBE binary SUM gate. This
gate takes (aj , bj , cj → (a, cj + aj + bj , cj). aj and cj are
undisturbed, while bj becomes the sum of the three, modulo 3.
cj will be used as the carry from qutrit to qutrit in our overall
circuit. The circuit for SUM is shown in Figure 3.

C−R gate matrix

1  0  0  0  0  0  0  0  0
0  1  0  0  0  0  0  0  0
0  0  1  0  0  0  0  0  0
0  0  0  1  0  0  0  0  0
0  0  0  0  1  0  0  0  0
0  0  0  0  0  1  0  0  0
0  0  0  0  0  0  0  1  0
0  0  0  0  0  0  0  0  1
0  0  0  0  0  0  1  0  0

R

C−R gate figure

Figure 2: The control-rotor gate.
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Figure 3: The SUM gate.
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Figure 4: The CARRY gate.
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Figure 5: The complete ternary carry-ripple adder.

2.2 CARRY gate

The purpose of the ternary CARRY gate is also the same as
the purpose of the binary CARRY gate. CARRY outputs the
carry cj+1 which is calculated when cj , aj and bj are added.

3 The Reversible Ternary Adder

Our complete adder involves two n-qutrit registers, a and
b, and n ancillae c, used to hold the intermediate carry values
during the computation, and an additional qutrit bn+1 which
holds the carry out, or new high digit of the b register. The
adder leaves a undisturbed and takes b → a+b. The c ancillae
must be returned to their original zero state. As in the original
VBE adder, the registers are interleaved, and the CARRY and
SUM are arranged so that the carry qutrits are calculated in
ascending order, a structure known as a carry-ripple adder.

The depth and total complexity of our circuit are both O(n).
Both the CARRY and SUM blocks for ternary logic are substan-
tially longer than their binary equivalents. The exact perfor-
mance will depend on the construction of three-qutrit gates.
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