
Bachelor Thesis
Academic year 2011

Constructing a software framework for
synthesizing high accuracy quantum cir-
cuits

Faculty of Environment and Information Studies
Keio University

Pham Tien Trung

Note: This is a revised version of the thesis, updated on
2012/6. The following changes have been made: sections
6.2 and 6.3 (p.40 - p.47) were reordered for comprehension;
the figure 8.2 updated with more plot data.

Abstract

This research concentrates on finding an efficient way to decompose an arbi-
trary quantum gate into sequences of quantum gates in a certain library set
in order to construct a efficient quantum compiling program, which trans-
lates a program modelling a quantum mathematical-level algorithm into a
diagram describing the machine-dependent quantum circuit which used to
realize the algorithm. Our main contribution is enhancing the performance
of the Solovay-Kitaev decomposition algorithm proposed by Christopher M.
Dawson and Michael L A. Nielsen, by applying an efficient geometric search-
ing technique as well as widening the search space for the basic approxima-
tion step in their algorithm.
These techniques give a large improvement. Compared to the previous

naive approach, the length of the gate sequence required to approximate an
arbitrary single qubit quantum gate of special unitary 2 matrix reduces by
at least nearly a factor of three or even seven whereas the accuracy is still
in an acceptable range (around 10−4, 10−5 using the matrix trace distance
function in the experiment) in an acceptable time (no longer than five min-
utes for one gate decomposition procedure in the experiment). Thus, some
quantum subroutines can be executed nearly seven times as fast by compil-
ing using our techniques. This result encouraged us to develop a complete
language system: an input language, its compiler, and the corresponding
output formats for simple quantum algorithms and subroutines, as the final
outcome of this research.

Keywords:
1. Quantum algorithm 2. Compiler 3. Gate decomposition
4. Solovay-Kitaev theorem 5. Geometric search

Keio University,Faculty of Environment and Information Studies
Pham Tien Trung

i

ii

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Research purpose . 1

1.3 Proposed approach . 2

1.4 Main contributions . 3

1.5 Thesis structure . 3

2 Background 5

2.1 Basic concepts of quantum information and computation . . . 5

2.1.1 Quantum system and quantum states 5

2.1.2 Quantum bit . 5

2.1.3 Quantum state evolution 8

2.1.4 Quantum entanglement 9

2.1.5 Quantum measurement 9

2.2 Quantum circuit model . 9

2.3 Language and compiler . 12

2.3.1 Context-free grammar 12

2.3.2 Programming language and Compiler design 14

2.4 Chapter summary . 15

3 QAS-Quantum algorithm scripting language 17

3.1 Why QAS? . 17

3.2 Language introduction . 17

3.3 Language features . 18

3.4 Program structure . 18

3.5 Language specification . 20

3.5.1 Notation . 20

3.5.2 Grammar . 22

3.5.3 Sample Program Analysis 23

3.6 Program compilation overview 25

3.7 Chapter summary . 25

iii

4 Compiler construction process and output format 27

4.1 QAS Program compilation basic steps 27

4.2 QAS compiler construction methodology 27

4.3 Tools . 28

4.4 Output format . 29

5 Key technical problems 31

5.1 The concept of quantum gate decomposition 31

5.2 Quantum gate decomposition accuracy measurement method 32

5.3 Quantum gate decomposition problem in this research 33

5.4 Prominent difficulties definition 34

5.5 Some related research . 35

5.6 Chapter summary . 36

6 Proposed Solutions 37

6.1 Inherited techniques analysis 37

6.1.1 The Solovay-Kitaev (SK) theorem 37

6.1.2 Current implementing algorithm (by Dawson-Nielsen) 37

6.1.3 Promising improvement indication 39

6.2 Solutions for search space expansion (SSE) problem 40

6.2.1 Proposed algorithm enhancing techniques 40

6.2.2 Further development 42

6.2.3 Improving the entire system performance 42

6.3 Solution for large-size database matrix looking up subroutine
speeding up . 43

6.3.1 From the matrix look up problem to a geometry point
search problem . 43

6.3.2 Help for the entire system performance 43

6.3.3 Geometric Near-neighbour Access Tree data structure 44

6.3.4 Geometric near-neighbour access tree (GNAT) 44

7 Implementation 49

8 Experiments and Evaluation 51

8.1 Orientation . 51

8.2 System overall evaluation . 51

8.3 Research points evaluation . 51

8.3.1 Evaluation of search space expansing method 51

8.3.2 Evaluation of Geometric Near-neighbour Access Tree
in matrix point looking up 54

9 Conclusion and future work 57

A Frequently used quantum gates 61

iv

B Barenco decomposition method 63

v

vi

List of Figures

1.1 Abstract system diagram . 3

2.1 Bloch sphere . 6
2.2 Quantum teleportation circuit 11
2.3 Derivation Tree Example . 13

4.1 Intuition of work flow . 28

5.1 Number of gate sequence vs sequence length 35

6.1 A simple GNAT with clusters 45

8.1 Time required: GNAT vs Linear search 55
8.2 Approximation accuracy vs length of outcome gates sequence 56

A.1 CNOT gate . 61
A.2 Toffoli gate . 61

vii

viii

List of Tables

3.1 Terminal symbols-explicit vocabulary of the language 21
3.2 Non-Terminal Symbols-hidden structures of the language . . 22
3.3 Language grammar . 23

7.1 Implementation environment 49
7.2 Software layered architecture 50

8.1 Outcome gates sequence length and accuracy by old and new
method for randomly chosen queries 53

8.2 Gates in Fourier transform circuit decomposition 54

A.1 Frequently used quantum gate 62

ix

Chapter 1

Introduction

1.1 Motivation

For decades, the computer industry has been matching the predictions of
Moore’s law by doubling the number of transistors that can be placed in-
expensively on an integrated circuit every two year. Recently, however, we
are seeing this law is reaching its limit. Transistor size is hitting the size of
atom. Therefore, due to problems such as heat over-generation and quan-
tum effects in the micro-scale chip, the classical computer, (the architecture
principles developed by Turing, Eckert, Mauchly and others and often at-
tributed to von Neumann), is going to get stuck. One solution is, instead
of avoiding quantum effects, we take advantage of them as a computation
power, to form a entirely novel computer paradigm, called quantum compu-
tation.

Research in quantum computing so far has produced great success in
both physical device construction; for example, quantum dot or ion trap
machines; and quantum abstract subroutine and algorithms (mathematical
model of the algorithms which works on a quantum computer) development;
for example, quantum Fourier transform which is integrated in quantum in-
teger factoring algorithm (Shor in [1]). However, accompanying the level
of research in the two fields, the gap between quantum abstract algorithm
research and quantum physical computer implementation is getting larger
as algorithm research seems to grow much faster. This problem might lead
to difficulties in constructing the structure of the realistic device such as a
quantum circuit which has to implement a given quantum algorithm.

1.2 Research purpose

This research aims to contribute a useful software tool bridging the gap
between quantum abstract algorithm research and research into the physical
implementation of circuit, in order to complete the framework of designing a

1

circuit-based quantum computer. In detail, our research’s aim is to provide
a user-friendly software by which, an abstract quantum algorithm (given by
the user, including mathematical elements for quantum computation: uni-
tary matrices, which discussed in next chapter) can be easily automatically
mapped into its implementing circuit model/diagram on a certain quantum
computer, for which an instruction set and accuracy constraints are given.
This work is the same as the job of a compiler on classical computer, which
converts human-readable code into machine-readable code to execute an al-
gorithm on a physical device. The only difference here is that the output
cannot be run directly on the same the machine as the compiler (currently
a classical computer).

The evaluation criteria for the outcome software of this research are:
1. Qualitative criteria

(a) Whether the software works or not.
(b) The software is easy to use or not.
(c) The input and output are in standard form, understandable or

not. This criterion will determine in part if the software can be
widely used or not.

2. Quantitative criteria
(a) How accurately the output circuit implements the input algo-

rithm.
(b) The cost of the output circuit for a given precision range in term

of the amount of resource required. The lower the cost the better.
This is the hardest part of this project, minimizing the quantum
gates used in the output circuit diagram to approximate a quan-
tum gate in the input program with an acceptable accuracy.

1.3 Proposed approach

As seen above there is a strong similarity between the goal of the research
and the function of the compiler, giving a strong argument to view the prob-
lem in the scope of language and compilers. In other words, if we can model
a quantum algorithm as the input language and a quantum physical device
description as the output of a compilation process in which the mathemati-
cal transformation between them is automatically integrated, we will have a
straightforward approach for the research project. This process also allows
us to reflect results the mathematical transformation of quantum circuit into
real world task. Figure 1.1 below illustrates this approach.

With this system, when a user wants to have a machine-dependent cir-
cuit diagram which implements an abstract quantum algorithm, he/she can
follow these steps:

1. Transcribe the algorithm into the input language we designed.

2

Figure 1.1: Abstract system diagram

2. Use our system to find the implementing circuit diagram for the algo-
rithm.

3. Bring the output circuit diagram to the physical device development
team to build the realistic circuit.

1.4 Main contributions

This research so far makes the following contributions to the research field
• Created a simple but relatively general purpose language to model

quantum abstract algorithms.
• Improved the performance of the Solovay-Kitaev single quantum gate

decomposition procedure, which has the main role in the compilation
process, by approximating an arbitrary abstract quantum gate by a
sequence of fixed quantum gates in a given instruction set.

1.5 Thesis structure

This thesis is written in top down style from basic background to deep
research topics, in order to give the audience not only the comprehension
needed but also an illustration of the actual working progress.
The next chapter gives basic background, which is the material for the

whole work. The 3rd chapter present our language model of quantum al-
gorithms, which gives a concrete image of the above approach idea. The
4th chapter focuses on the compilation process and the output format of
the system. The 5th and 6th chapters are written to describe the research

3

process, from encountering problems, to finding related research and then
coming up with an original solution. The 7th and 8th chapters talk about
implementation and evaluation of the research and we found that our so-
lution can reduce the resource used for the circuit to reach an acceptable
precision range. The last chapter is a conclusion with directions for future
work.

4

Chapter 2

Background

2.1 Basic concepts of quantum information and
computation

2.1.1 Quantum system and quantum states

The discovery of quantum mechanics in the early days of 20th century
brought a completely different image of the micro world: An uncertainty
about the properties of a system intrinsically exist, no matter the measure-
ment method and devices. A system which has the uncertainty of properties
is called a quantum system.

From this definition, we have a mathematical concept to model the com-
plete description of a physical system, including quantum system, called a
quantum state. It is defined by a ray (more simple, a vector) in Hilbert
space. A quantum state for the system called Ψ is often written as a ket
vector |Ψ〉, which can be expressed as

|Ψ〉 =



a0
a1
a2
.
.
.

 =
∑
i=0

ai|i〉 ai ∈ C

|i〉: Possible outcome state of one measurement on the system
|ai|2: Probability that the event |i〉 is the outcome of the measurement
Σ|ai|2 = 1

2.1.2 Quantum bit

Like the better-known classical bit, a quantum bit (qubit) is the atomic
unit of information in the field of quantum computation. It is the instance

5

of a quantum state which has 2 basis states, call |0〉 and |1〉. Such a system
is a two-level system in quantum mechanics. The simultaneous existence of
more than one state in one qubit make the information in 1 qubit very large,
compared to the classical bit has only one state in a certain moment. The
presentation of a qubit depends on the quantum state of it.

1. Independent qubit
If the qubit is itself a independent quantum state, called a pure state,

it can be defined by a state vector. A popular mathematical formula
of 1 qubit is the same as a 2 basis states quantum state

|Ψ〉 = a|0〉+ b|1〉

|a|2 + |b|2 = 1

As a qubit is a two-level system, it also has the uncertain property.
In contrast to classical bit which has a deterministic value 0 or 1 at
any moment, a qubit is in the both states at the same time, or in
a superposition. However this property of a qubit dissapears after
conducting a measurement. We will return to this phenomenon more
detail in the part of quantum measurement.

A comprehensive way to visualize a qubit is using the Bloch sphere.

Figure 2.1: Qubit |Ψ〉 in a Bloch sphere with states basis
Image from [2]

|Ψ〉 = cos θ2 |0〉+ eiφ sin θ
2 |1〉

2. Multi-qubit quantum state
When the quantum system consists of more than 1 independent qubits,
its state can be calculated by the following formula:

Take a quantum state made up from 2 qubits A and B, with the
respective state vector vA and vB. Call the state vector of the whole
system vAB, then

vAB = vA ⊗ vB (2.1)

6

⊗ is the symbol for tensor product of 2 vectors.
For example, if

vA = |1〉 =

(
0
1

)

vB = |0〉 =

(
1
0

)
then

vAB = vA ⊗ vB =

(
0
1

)
⊗
(

1
0

)
=


0
1
0
0


According to the equation 2.1 and the property of the tensor product,
it is easy to see that a quantum state of n qubits has a state vector of
2n elements

3. Qubit in a mixed state
In some multi-qubit quantum states, the state vector of the whole

system cannot be written as a tensor product. The state of each qubit
which has entanglement with other qubit(s)-or in other words, as a re-
sult, is impossible to be written in state vector form (do not mess with
the state of the whole system, which is always possible to be written
in state vector notation). We say the qubits in this case are in a mixed
state, although entanglement is not the only way to generate mixed
state. The entire system, as the same time, is in a pure state though.

Example: In the 2-qubit state |AB〉 = 1√
2
(|0〉|1〉 + |1〉|0〉), qubit A

and B are in mixed state. We have lost information of each qubit if we
do not have access to the other one, unlike in the case of independent
qubit A and B.
Density matrix, which is computed from the pure state of the many-

qubit system, is the method which solves the presentation problem.
We introduce briefly about the meaning and computing method of
density matrix

Given the 2-qubit state |AB〉
Density matrix to presenting the state of qubit A, ρA, is computed

by the following equation

ρA =
∑
i

pi|Ψi〉〈Ψi| (2.2)

|Ψi〉: Possible states of qubit A
pi: Probability of measured state |Ψi〉 in the corresponding basis mea-
surement.

7

In example of the state |AB〉 =
1√
2

(|01〉 + |10〉), we can see that the

2 possible states of qubit A after a measurement (see the part of mea-
surement later in this section for detail) with the observable Z are 0
and 1 with respective probability 0.5 and 0.5. So the density matrix
for qubit A (and the same for qubit B) is calculated as below:

ρA =
1

2
|0〉〈0|+ 1

2
|1〉〈1|

=
1

2

(
1 0
0 1

)
In fact, a density matrix ρ can be expressed as a point on Bloch Sphere
with axis as basis operators X ,Y and Z: the Pauli matrices as it can
be rewritten by this formula

ρ = aX + bY + cZ + I/2

= a

(
0 1
1 0

)
+ b

(
0 −i
i 0

)
+ c

(
1 0
0 −1

)
+

(
1 0
0 1

)
/2

1 ≥ a2 + b2 + c2

(I:identity matrix size 2)

2.1.3 Quantum state evolution

Over time, a closed quantum state has the ability to evolve into another
state. This evolution obeys one of the most important postulates in quan-
tum mechanics, the Schrödinger equation

i~
d|Ψ〉
dt

= H|Ψ〉 (2.3)

where ~ is Plank’s constant divided by 2π and H is a fixed Hermitian oper-
ator called the Hamiltonian of the closed system.
From this equation, we have the following equation apply with any time
interval [t1, t2]

|Ψ(t2)〉 = exp

[
−iH(t2 − t1)

~

]
|Ψ(t1)〉 (2.4)

Define the generator U as

U(t1, t2) ≡ exp
[
−iH(t2 − t1)

~

]
(2.5)

Representing the evolution of the system from |Ψ(t1)〉 to |Ψ(t2)〉, we realize
that as U is a unitary matrix, the quantum state is evolved by unitary
operator.

8

2.1.4 Quantum entanglement

Quantum entanglement can result in the mixed state mentioned above. En-
tanglement is the phenomenon when different particles interact in such a
way that the state of the whole system can not be decomposed into sepa-
rate states of each particle. This means that their measurement outcomes
can maintain their property of uncertainty but be correlated (in classical
systems, correlation may also occur but in quantum mechanics is much
stronger). This correlation is called entanglement. Entanglement is not re-
stricted to a pair of qubits but to can occur among any number of qubits,
called entangled qubits.

2.1.5 Quantum measurement

By measuring a quantum system, we cause it to interact with the external
world, to have an outcome. The outcome is probabilistic due to the su-
perposition of quantum states. However, after measurement, the quantum
system is no longer closed, and the superposition also collapsed into one
deterministic states, so that we will get the same outcome if we continue the
same measurements later.
In the mathematical model, measurement is also the linear operations of

measurement operators on the quantum system state vector.

2.2 Quantum circuit model

1. Quantum gate
In the classical paradigm, a logic gate is the unit performing process-

ing of information, converting it from one form to another. Binary
gates like AND, OR, NAND, NOR conducting binary operations are
the basis of any current computer processor.
In the quantum computation paradigm, in the sense of processing

information (hidden in quantum state), we also have the concept of “
quantum gate ”. As discussed in the section of quantum state evolu-
tion, it is straightforward that unitary operator which change a quan-
tum state into another can be considered as “ quantum gate ” in term
of quantum information processing unit. Like the truth table for clas-
sical gate, unitary matrix is the specification of a quantum gate.
Example: Quantum Not Gate, which convert qubit |0〉 into qubit |1〉

and vice versa, is specified by the matrix X

X =

[
0 1
1 0

]
(2.6)

9

Operating on |0〉, we see

X|0〉 = X

(
1
0

)
=

(
0
1

)
= |1〉 (2.7)

and operating on |1〉 we see

X|1〉 = X

(
0
1

)
=

(
1
0

)
= |0〉 (2.8)

If a quantum gate is operating on an n-qubits quantum system, be-
cause the state vector of the quantum state has 2n elements, the size
of a matrix that can operate with this state vector is 2n×2n, result in
the size of the specifying unitary matrix of the quantum gate is also
2n. See for example the CNOT-gate (A.1) and Toffoli(A.2) gate in the
Appendix 1 for instance
Quantum gates which operate on 1 qubit are called single qubit gate.

2. Quantum circuit
As in the classical paradigm, in quantum computation, there is the

concept of a circuit: quantum circuit. It contains connected quantum
gates, give the circuit the ability of performing a sequence of quantum
information process along time; and often contains measurement de-
vices to read out the result as the outcome of measuring a quantum
object and/or classical controlling part.
However, compare to classical circuit, there exist the following points

to discriminate quantum computation
(a) Gate connecting “ wire ”

In classical circuit, gates are normally connected by wires to prop-
agate the output of one gate to the input of another. The term
“ wire ” in a quantum circuit refers to other things, perhaps the
passage of time (in many cases) or perhaps the movement of pho-
ton, from one location to another.

(b) No Independent copies
Copying a qubit is not allowed in quantum computation, shown in
the “ No cloning theorem ” (Wooters[3]). It completely different
in classical circuit, where we can copy the output of one gate for
the input of several others.

(c) Output calculation
In general, the output of a quantum circuit, if in the form of a
state vector, can be calculated from the input by evolving the
input state vector by quantum gates of the circuit in time order,
one after another.

3. Example

The quantum teleportation (teleporting the qubit |q0〉) circuit has the

10

Figure 2.2: Quantum teleportation circuit
Image from http://www.media.mit.edu/quanta/qasm2circ/

input of 3 qubits |q0〉,|q1〉,|q2〉, in which |q1〉 and |q2〉 is initialize to
|0〉. It deploys quantum gates of H,Z,X, Control-Not;measurement
devices and a classical “ bus ” to transfer measurement results as
classical signals. See the figure 2.2 for conception.

4. Universal quantum gates
In the classical computation paradigm, there are sets of gates (e.g.

AND, OR, NOT) that can be used to compute any arbitrary classical
function. In quantum computation, there are also gate sets which can
be used to compute any quantum evolution, called universal gate set.
In other words, any quantum gate is constructable by the gates in a
universal set. The term “ constructable ” means any unitary operation
can be approximated to an arbitrary accuracy by a quantum circuit
involving only gates in the universal set.

Some examples of the known universal gates sets: Set of single qubit
gates and controlled-NOT gate, set of Hadamard gate, phase gate,
controlled-NOT gate and Toffoli gates[4]. See more detail about this
issue in chapter 5 :“ Key technique problem ” and chapter 6: “ Solution
” in this thesis.

5. Physical implementation
There are five requirements for the implementation of quantum com-
putation, almost focused on generation, preservation, evolution and
measurement of qubit, summarized by Vincenzo in[5]
• Qubit presentation
• Controllable unitary evolution (gate implementation using uni-

versal set)
• Initialization of qubit state
• Measurement of final state
• Long coherence time (avoiding decoherence phenomenon)

11

Some systems that can meet these requirements are Cavity quantum
electrodynamics, Trapped Ion and Nuclear spin. Surveying them is
not in the scope of this thesis.

2.3 Language and compiler

This section gives the readers fundamental background about the field of
grammar, language, and compiler. For more detail technical reading, please
refer lecture notes in [6] (in Japanese) and [7], which discuss these fields in
a high level.

2.3.1 Context-free grammar

Definition

We begin this discussion from the concept of a phrased-structured grammar
(PSG). Call G a instance of PSG. G is defined as below.

G = (VN , VT , P, S)

VN : Set of non-terminal symbols.

VT : Set of terminal symbol.

S : Start symbol. S ∈ VN
P : Rewrite rule or production.

More about rewrite rule or production of a PSG

V = VN ∩ VT
P ⊆ V ∗VNV

∗ × V ∗

If (u, v) ∈ P , write u→ v

A context-free grammar is the type 2 of PSG, with more constraint for the
rewrite rule P :P ⊆ VN × V ∗. In simple words, it can be said that a symbol
in the non-terminal set has its own rewrite rule, independent on other ones;
the reason which gives this type of PSG the name “ Context-free grammar
”. For instance, given G1 a context-free grammar.

G1 = (VN , VT , P, S)

VN : {s, u}
VT : {A,B, ε}
S : s

P : {s→ uB, u→ AB|ε|B}

12

Phrase-structured language

Each PSG specifies a its own language. This language consists of “ sentences
”, which can be generated from the start symbol of the grammar by applying
the rewrite rule. The language of PSG G is denoted L(G) and defined as
below:

L(G) = {x ∈ V ∗T |S ⇒∗G x} (2.9)

⇒∗G : Transitive closure of G (2.10)

Derivation tree

A derivation tree is a way to graphically express how a context-free grammar
generate a sentence in its language by using tree structure. Tree root is the
start symbol (S) of the grammar. Each tree node is a left-hand side of a
production (P) in the grammar, i.e a non-terminal symbol, and child nodes
are the right-hand side of this production. The leaves of a derivation tree
can be considered as terminal symbols of the context-free grammar. Figure
2.3 is the derivation tree of the above grammar instance G1 which derives
the string ABB from the start symbol.

Figure 2.3: Derivation Tree Example

Parsing

The problem of parsing can be stated as follow: Given a context-free gram-
mar G and a string w, how do we know if w ∈ L(G) and if so how do we
indicate the derivation tree or the sequence of production rules that produce
w. A program which does the parsing procedure is called a parser.

There are 2 main approach of constructing a parser: The top-down ap-
proach and the bottom-up approach. A top-down parser, like JavaCC, starts

13

from the start symbol at the top of the parse tree and works downward,
driving productions in forward order until it generate the terminal leaves
exactly. A bottom-up parser, like YACC/BISON, starts from the string of
terminals itself and builds from the leaves upward, working backwards to
the start symbol by applying the productions in reverse. Both approaches
have their strengths and weakness. Three well-known representatives of the
2 approaches are recursion descent (top-down approach), LL(k) parser and
LR(k) parser (bottom-up approach).
• Recursion descent parser

The top-down parser which eliminates recursive derivation in the parsed
derivation tree.
• LL(k) parser

Traverse the input string left-to-right, using k tokens (symbols) of
looking ahead to generate a leftmost derivation.
• LR(k) parser

Traverse the input string left-to-right,using k tokens (symbols) of look-
ing ahead to generate a rightmost derivation.

2.3.2 Programming language and Compiler design

The work of designing a programming language consists of defining a context-
free grammar, which can be transformed into formats understandable and
executable for the computer. Some important points in designing a pro-
gramming language:
• For a programming language grammar, the terminal symbols, which

can be considered as the vocabulary of the language, are often regular
expressions.
• Should be designed to limit the ambiguous cases (the parser can parse

a string-program into various derivation tree, leading to making the
computer “ misunderstand ” the programmer’s demand).

The compiler is a computer program which takes a program written in a
programming language as the input, process it, and compose an output, usu-
ally machine-executable instructions. Fundamental components of a popular
compiler
• Scanner (lexical analyser):

Recognizes and translates a sequence of characters in the input pro-
gram into a corresponding sequence of tokens
• Parsers (syntax, semantic analyser):

Consumes the tokens generates by the scanner, then generates the
program structure (derivation tree) by applying the language grammar
with a certain approach (LL(k),LR(k),...)
• Code generator:

Uses the output of the parser to generate target code (can be under-
stood as another language).

14

• Code Optimizer:
Optimizes the output code, for instance, to reduce the resource re-
quired by the output code by removing redundant code.

2.4 Chapter summary

This chapter discussed about the main background required for this grad-
uate project, which covers not only quantum computation theory but also
very well-known fields in current computer science like language, compiler
and grammar, in order to give readers a conception of what is going next
in this thesis . In the next chapter, we are talking about the first step
approaching this research purpose: modelling the quantum algorithm by a
language called QAS (quantum algorithm scripting) language.

15

16

Chapter 3

QAS-Quantum algorithm
scripting language

3.1 Why QAS?

This chapter begins from the point: Why can a programming language be
an answer for reaching the research purpose of creating a connection between
quantum abstract algorithm research and quantum physical implementation
circuit research?

Currently, because of the popularity of the quantum circuit model in
quantum computation research, quantum algorithms are often modelled by
a quantum circuit diagram .This describing way works well in pure algo-
rithm research thanks to its comprehensive and illustrative power; however,
when entering the implementation phase on a certain quantum computer
(when one is built), we encounter two big problems. Firstly, there is the
difficulty of making a standard, computer-understandable circuit diagram
without a tailored graphical tool. Secondly, the more serious one, it is the
problem of how to automatically convert an algorithm circuit diagram into
a logical-equivalent machine-dependent specification which, in many case,
has completely different circuit elements.

A plausible solution is modelling the quantum algorithm (the circuit dia-
gram in the case of quantum circuit model) in the form of a programming
language, which can be both comprehensible to a human, and flexibly ma-
nipulated by a computer program with the help of a compiler.

3.2 Language introduction

The Quantum algorithm scripting language (QAS) is a programming lan-
guage designed for researchers who want to create a quantum program by

17

specifying a high-level quantum circuit model computation, i.e. designing
a circuit with input qubits and their operating quantum gates operating
on them in mathematical expression, for a desired output. A program in
this language should be later used as the input of the accompanied com-
piler to synthesise a lower-level description of a quantum circuit which can
be considered as “ machine-code ” on a certain quantum computer. This
lower-level description can be called the output language, which is intro-
duced in next chapter, but it has almost the same structure and grammar
as the input program in QAS. The remaining work of making this language
become executable on a practical quantum computer is beyond the scope of
my work.

3.3 Language features

QAS is designed as a simple scripting language, without a main function
or difficult control flows, so that even programming inexperienced users, like
quantum physics researcher can easily use it for their own purpose. On the
other hand, this language is dedicated for “quantum programmers”, who
are researching quantum algorithm, so it takes from quantum computation
field the concepts of qubit and quantum gate (quantum operator) as basic
elements of a program.

In the source code of a program, qubits are treated as variables, whereas
quantum gates (in current version, up to 2-qubit gate or 2-control-1-target
gate) iare considered as the only operators in this language, though also
treated as variable at the same time. More details are mentioned in the
next parts of this chapter

Lastly, though simple, QAS is nevertheless a programming language, it
contains some popular features of an ordinary programming language like
arrays of variables and “ for loop ” in order to save time for iterated code
writing, and to make the program more clearly.

3.4 Program structure

Although QAS is a scripting language, implying that it does not have strict
structure requirement like a main function, a standard program in QAS is
recommended to consist of 3 parts:

1. Qubit variables and classical variables declaration
Declares qubits register and classical variables (used for loop and array
manipulation inside the program to save time for writing iterating
code, not to be confused with classical control in quantum circuit)

18

with names. Name syntax for qubit variables and classical variables
are distinguished. See detail in the next section.

2. Quantum gate definition declaration
Declares quantum gates (operators) with names, operated qubits and
specifying mathematical parameters. For example, a single qubit quan-
tum gate is specified by parameters for it s equivalent unitary matrix:
Angle of rotations around y and z gates, and phase angle if required.
More detail is mentioned in Chapter 2, the background about quantum
computation and in the next section, language specification.

3. Operating blocks
In quantum computation, a strict operation schedule is required be-
cause one qubit in one time step can only interact with one operator
in general. Therefore, in the main part of a program, describing in-
teractions between qubits and quantum gates, the programmer has to
divides operations into time steps in their code. The compiler will au-
tomatically check the validation of the programmer-define scheduling
strategy as a part of semantic error handling procedure.

Example of structure in a sample program (The code lines in this program
will be explained in next section)

/∗This i s a comment∗/
QVAR r1 , r2 , r3 , q [] ;
CVAR $ i ;
/∗−−−−−−End o f v a r i a b l e d e c l a r a t i o n part−−−−−−∗/
/∗−−−−Begin o f g a te d e f i n i t i o n d e c l a r a t i o n part−−−−∗/
DEFINE mygate 0 . 6 , 0 . 8 , 0 . 9 ˜ 1 . 2 ;
DEFINE mygate2 0 . 4 , 0 . 9 , 1 . 6 ;
/∗−−−−−−End o f ga te d e f i n i t i o n d e c l a r a t i o n part−−−−−∗/
/∗−−−−−−Begin o f time s t e p 1 o pera t io n b lock−−−−−∗/
STEP:
BEGIN
GATE CONTROL CONTROL mygate r1 , r2 , r3 ;
END
/∗−−−−−End o f time s t e p 1 ope ra t ion b lock−−−−∗/
/∗−−−−Begin o f time s t e p 2 o pera t io n b lock−−−−∗/
STEP:
BEGIN
GATE CONTROL mygate r1 , r2 ;
GATE mygate2 r3 ;
END
/∗−−−−−−End o f time s t e p 2 op era t ion b lock−−−−−−∗/
/∗−−−−Begin o f a 4 t imes i t e r a t e d o per a t io n b lock−−−−∗/

19

ITERATE=4:
/∗−−−−−−Block o p e r a t i o n s d e f i n i t i o n s−−−−−−∗/
STEP:
BEGIN
GATE mygate2 r3 ;
GATE mygate2 r1 ;
FOR $ i =1:3
BEGIN
GATE mygate2 q [$ i] ;
END
END
/∗−−−−End o f 4 t imes i t e r a t e d o pera t io n b lock−−−−∗/

3.5 Language specification

In fact, the context free grammar used in constructing programming lan-
guage does not explicitly distinct notation from grammar. The below ex-
planation is just for clarity. For the theoretical explanation of terminology
“ Terminal symbol ”, “ Non-terminal symbol ”, “ grammar ”, refer Chapter
2:“ Background ”, Section 2:“ Language and compilation ”

3.5.1 Notation

The concepts used in this section are mentioned in chapter 2, section ”Lan-
guage and compiler”

Terminal Symbols

Terminal symbols-explicit vocabulary of the language, in term of any pro-
gram in the language only contains words in the set of terminal-symbols.In
the tree structure of a program written in the language, instances of termi-
nal symbols set are leaf nodes.The terminal symbols in QAS are defined in
the table 3.1

20

Table 3.1: Terminal symbols-explicit vocabulary of the language

Name Regular expression

〈V ALUE〉 ([“-”])*([“0”-“9”])+ | ([“-”])*([“0”-“9”])+“.”([“0”-“9”])+
〈V AR〉 ([“a”-“z”])+([“0”-“9”])*(“[”(“$”([“a”-“z”])+([“0”-“9”])*)¿‘]”)?
〈CV AR〉 “ $”([“a”-“z”])+([“0”-“9”])*
〈OPERATOR〉 “GATE”
〈SEPARATE〉 ([“ ”])+
〈TY PE〉 “QVAR”
〈CTY PE〉 “CVAR”
〈DEFINE〉 “DEFINE”
〈CONTROL〉 “CONTROL”
〈STEP 〉 “STEP:”
〈BEGIN〉 “BEGIN”
〈END〉 “END”
〈FOR〉 “FOR”
〈ITERATE〉 “ITERATE”

Semantic in the language, define the human-understandable meaning of each
terminal symbol in the language. This also can not disappear in any lan-
guage tutorial.

Name Representation for

〈V ALUE〉 Real value, specifying gate parameter or classical vari-
ables assigned value

〈V AR〉 A qubit or gate name
〈CV AR〉 A classical variable name
〈OPERATOR〉 Prefix of a operation (interaction of qubit and quantum

gate)
〈SEPARATE〉 Separate between token
〈TY PE〉 Type of qubit variable
〈CTY PE〉 Type of classical variable
〈DEFINE〉 Definition of a quantum gate
〈CONTROL〉 Controlled operator
〈STEP 〉 Beginning of a time step of operations
〈BEGIN〉 Entering of a time step of operations (always follow

STEP token)
〈END〉 End of a time step of operations
〈FOR〉 Beginning of a loop applying on classical variable
〈ITERATE〉 Beginning of a loop for operations block

Non-Terminal Symbols

Non-Terminal Symbols-hidden structures of the language. In the tree struc-
ture of a program written in the language, instances of non-terminal symbols

21

set are non-leaf node.3.2

Table 3.2: Non-Terminal Symbols-hidden structures of the language

Name Semantic

〈compound− of − stmt〉 The whole program
〈expr〉 A line of variable declaration or gate defini-

tion
〈block〉 A block of operations on one time step
〈loop〉 A loop applying on classical variable
〈range〉 Range for looping classical variable (min

value-max value)
〈declare〉 A declaration line
〈multi− var〉 Multi quantum (qubit) variables declaration
〈var〉 Indexed Qubit (used in array)
〈multi− cvar〉 Multi classical variables declaration
〈define〉 Definition of a quantum gate with 3 or 4 pa-

rameter
〈operate〉 An operation (of gates acting on qubits)
〈block − iterate〉 Number of iterations of a operation block in

time flow

3.5.2 Grammar

The grammar of a language is the rule to product sequence of symbols from
a non-terminal symbol in the vocabulary. The grammar is used to construct
a language, as well as to parse a program written in this language into a
structured form. Therefore it is the main of any language.3.3

22

Table 3.3: Language grammar

Non-terminal symbol Production

〈compound− of − stmt〉 ((“ 〈expr〉 ; ”)| 〈block〉)∗
〈expr〉 〈declare〉 | 〈define〉
〈block〉 (〈block − iterate〉)∗

〈STEP 〉 〈BEGIN〉 (〈operate〉 “; ”| 〈loop〉)∗
< END >

〈loop〉 〈FOR〉 〈SEPARATE〉 〈CV AR〉“=”〈range〉
〈BEGIN〉 (〈operate〉 “; ”)∗ 〈END〉

〈range〉 〈V ALUE〉 “:”〈V ALUE〉
〈declare〉 〈TY PE〉 〈SEPARATE〉 〈V AR〉

(〈multi− var〉)∗
| 〈CTY PE〉 〈SEPARATE〉 〈CV AR〉
(〈multi− var〉)∗

〈multi− var〉 “ ,”〈V AR〉
〈var〉 〈PREFIX〉 (index ())?

〈multi− cvar〉 “ ,”〈CV AR〉
〈define〉 〈DEFINE〉 〈SEPARATE〉 〈V AR〉

〈V ALUE〉 “, ” 〈V ALUE〉 “, ” 〈V ALUE〉
(“ ∼ ” 〈V ALUE〉)?

〈operate〉 〈OPERATOR〉 〈SEPERATE〉
(LOOKAHEAD(3)
〈CONTROL〉 〈SEPERATE〉
〈V AR〉 〈SEPERATE〉 〈V AR〉 “, ” 〈V AR〉
| 〈CONTROL〉 〈SEPERATE〉
〈CONTROL〉 〈SEPERATE〉 〈V AR〉
〈SEPERATE〉 〈V AR〉 “, ” 〈V AR〉 “, ” 〈V AR〉
| 〈V AR〉 〈SEPERATE〉 〈V AR〉)

〈block − iterate〉 〈ITERATE〉 “ = ” 〈V ALUE〉 “ : ”

3.5.3 Sample Program Analysis

QVAR r1 , r2 , r3 , q [] ;
// Declare 3 q u b i t v a r i a b l e s r1 , r2 , r3 and
//an array o f q u b i t v a r i a b l e s , c a l l e d q
CVAR $ i ;
// Declare c l a s s i c a l v a r i a b l e c a l l e d $ i

DEFINE mygate 0 . 6 , 0 . 8 , 0 . 9 ˜ 1 . 2 ;
// Define quantum gat e (quantum opera tor) c a l l e d mygate
// by 4 parameter s p e c i f y i n g u n i t a r y matrix o f mygate
// Phase and z , y , z a x i s r o t a t i o n a n g l e s r e s p e c t i v e l y :

23

// 1 . 2 , 0 . 6 , 0 . 8 , 0 . 9

DEFINE mygate2 0 . 4 , 0 . 9 , 1 . 6 ;
// Define quantum gat e (quantum opera tor) c a l l e d mygate
// by 3 parameter s p e c i f y i n g u n i t a r y matrix o f mygate
// Phase and z , y , z a x i s r o t a t i o n a n g l e s r e s p e c t i v e l y :
// 0 . 0 , 0 . 4 , 0 . 9 , 1 . 6

STEP:
// S t a r t a time s t e p
BEGIN
GATE CONTROL CONTROL mygate r1 , r2 , r3 ;
// Operate mygate on q u b i t r3 wi th 2 c o n t r o l l i n g q u b i t
// r1 and r2
END

STEP:
// S t a r t a time s t e p
BEGIN
GATE CONTROL mygate r1 , r2 ;
// Operate mygate on q u b i t r2 wi th c o n t r o l l i n g q u b i t r1
GATE mygate2 r3 ;
// Operate mygate2 on q u b i t r3
END

ITERATE=4:
// S t a r t a 4 t imes i t e r a t i o n o f o p e r a t i o n s b l o c k
STEP:
BEGIN
GATE mygate2 r3 ;
// Operate mygate2 on q u b i t r3
GATE mygate2 r1 ;
// Operate mygate2 on q u b i t r1
FOR $ i =1:3
BEGIN
GATE mygate2 q [$ i] ;
END
// Operate mygate on q [1] , q [2] , q [3]
END

24

3.6 Program compilation overview

For the compilation procedure, which translates QAS into a form of quantum
machine code with defined instructions set, I am using the Javacc (Java
Compiler Compiler) with JTB (Java Tree Builder) utility to automatically
generate a compiler with parser and lexical analyser for the language. The
final “compiler” is a runnable Java program, which takes the QAS source
file as the input, to produce output code. More about compiling process is
discussed in the next chapter.
Usage in my development environment

1. JTB form grammar file generation using jtb

2. Lexer and Parser generation using javacc

3. Runnable file generation

4. Compile/ Output source generation

3.7 Chapter summary

This chapter has given a comprehension about QAS (Quantum Circuit
Scripting) language, from the reason for establishing to the specification.
In short, it is a language that can be easily used to encode a simple quan-
tum algorithm as the description of its implementing circuit in quantum
circuit computation model. After compiling process, QAS source code can
be converted into more machine-dependent circuit description source code,
which requires only fixed gate as instruction set. This language (say out-
put language) is being talked in next chapter, however its grammar and
structure are almost the same as QAS.

25

26

Chapter 4

Compiler construction
process and output format

After constructing the input language grammar, the next step is to create a
processing tool for it, called the compiler. This converts a program in this
language into a data structure understandable by the computer, and then
processes this data structure into the desired other data structure: in this
case, the data structure depicts the machine-dependent quantum circuit,
then continue to output this result data structure into the output language.

4.1 QAS Program compilation basic steps

1. Generating the lexical analyser (lexer) to deal with the terminal sym-
bol in the program

2. Generating the parser to parse the program structure
3. Creating the program (call the program A) to process the data struc-

ture extracted from the input program. Instead of generating exe-
cutable code (assembly etc.) like an ordinary compiler, in this work, A
can be thought as the mathematical transformation of abstract quan-
tum algorithm to its machine-dependent implementing circuit descrip-
tion. This step is the most important work in this research.

4. Embedding all of those above into a final program:the compiler.

An overview of these steps is depicted in figure 4.1

4.2 QAS compiler construction methodology

In order to keep the software development process clear and flexible, we
conduct the work in the first two steps independently of the work of step 3.
The code for step 3 has to be written with as few as possible dependencies
on the parser and lexer or any language-related features. In this way, we can

27

Figure 4.1: Intuition of work flow

easily integrate the transformation algorithm into the compilation of other
languages, if any exists.

4.3 Tools

Considering the desired methodology, the following tools are chosen to create
the software

1. For the lexer and parser generation work
Use the Javacc (Java Compiler Compiler) utility of the Unix Operating
System, powered by JTB (Java Tree Builder) http://www.cs.ucla.edu/ pals-
berg/jtb/. The Javacc is very simple compiler making tool, however,
along with JTB, it has the ability of parsing complex languages with
loops, array and many other features.
JTB is created in a great way: it allows the least confusion of logic
processing and language components by applying the visitor design
pattern explained in Doug Orleans and Karl Lieberherr in [8], which
actually divide the work of a program into independent 2 parts: traver-
sal strategy and visitor behaviour, those suit for the work of parsing
program structure and process the components of the program struc-
ture.

2. For the algorithm processing work
Use Java Language with an octave-bridge for some cases to calculate

28

http://www.cs.ucla.edu/~palsberg/jtb/#overview
http://www.cs.ucla.edu/~palsberg/jtb/#overview

unusual mathematical operations.

4.4 Output format

The output format of the compilation process, as actually stems from the
logical data structure of a quantum circuit, can be customized by the user.
It can be a program with the same grammar as the input QAS program
but only uses gates in the library, or an other format like the AQUA lan-
guage[9], Latex source code etc., depending on the user demand. The output
should have the ability of being an input for another process, like the AQUA
language[9] can be exported to circuit image file, so in this work, we have
exported the output as a program with the same language as QAS with a
fixed gate library. In this case, our tool should be considered as a prepro-
cessor. In the future, to meet more users’ requirements, we are considering
adding a feature to the compiler allowing the user to define their output
format.

29

http://web.sfc.keio.ac.jp/~rdv/quantum/aqua-tools/AAAREADME.txt
http://web.sfc.keio.ac.jp/~rdv/quantum/aqua-tools/AAAREADME.txt

30

Chapter 5

Key technical problems

5.1 The concept of quantum gate decomposition

In chapter 2, when discussing the quantum circuit model, we showed that a
quantum circuit is constructed from quantum gates acting on quantum bits.
We also indicated that the work of a quantum gate is changing the state of
quantum bits by applying a unitary transformation on the state vector of
the input quantum bits. Therefore, a quantum gate is characterized by a
unitary matrix.
However, when creating a quantum computer, for its building block: quan-

tum gates, due to physical implementation constraints as well as some pur-
pose like keeping the circuit resistant to error, we are not always able to
have an arbitrary quantum gate for a desired computation[4]. Instead, we
use a fixed set of quantum gates as a universal library (set) of elementary
gates [10]. In other words, any arbitrary quantum gate can be approxi-
mated to arbitrary accuracy by elementary gates in the universal library.
This approximation process is called quantum gate decomposition. In a
mathematical view, this approximation is equivalent to the approximation
of an arbitrary unitary matrix by a product of elementary unitary matrices
in a fixed set. There is a similarity in the classical computer when any com-
putation is actually executed by instructions in a fixed instruction set.

For instance, we list some universal sets of elementary gates[4]:
1. Set of two-level unitary gates are universal.
2. Set of single qubit gates and CNOT gate is universal.
3. Set of Hadamard, phase, CNOT and π/8 gates is universal.

In the next chapter, we give the explanation of each of these universal set
as well as their position in this research.

31

5.2 Quantum gate decomposition accuracy mea-
surement method

There are many ways to estimate the extent to which two unitary matrices
(and equivalently two quantum gate) approximate each other. One way is
using an error function call E to measure the largest bias when operating
on vectors (pure states (1)) the 2 unitary matrix approximated U, V. The
physical meaning of this approximation estimating method is, the lower
the value of E(U, V), the more similar the measured outcome probability
distribution of the result state when U and V operate with one input state:

E(U, V) = max
|ω〉
‖(U − V)|ω〉‖ (5.1)

|ω〉 : Pure state that can be multiplied by U and V (5.2)

Define the trace distance function of 2 unitary matrices U and V

D(U, V) = Trace
√

(U − V)†(U − V) (5.3)

It was proven in [4] that with any unitary matrix U and V can be written
as a rotation matrix, i.e. U = Rotate−→n (φ),V = Rotate−→m (θ) (U is the uni-
tary transform can be written as the rotation an angle of φ around the axis
vector −→n and V is the unitary transform can be written as the rotation an
angle of θ around the axis vector −→m). We have D(U, V) = 2E(U, V). This
condition is true for any unitary matrices U, V up to global phase. So it
does not matter if we use the function D(U, V) as the distance function to
measure how different the 2 unitary matrices are. Of course D(U, V) much
easier to calculate than E(U, V). In this research, we use the trace distance
function D(U, V) as the distance function. distance(U, V)← D(U, V)

In the case of gate decomposition by approximating the unitary matrix U
by a sequence of unitary matrices called V1, V2...Vn in the universal set, the
accuracy of approximation is calculated as follows (smaller accuracy implies
a better approximation):

Accuracy = distance(U,

n∏
i=1

Vi) (5.4)

For example, you are seeing single-qubit quantum gate X with the cor-

responding unitary matrix X =

(
0 1
1 0

)
, we can decompose it into a se-

quence of 2 gates H and T with the corresponding unitary matrices as below

32

H =
1√
2

(
−i −i
−i i

)

T =

 e
−
iπ

8 0

0 e

iπ

8


HT ≈

(
−0.27060− 0.65328i 0.27060− 0.65328i
0.27060− 0.65328i 0.27060 + 0.65328i

)
So

distance(X,HT) = Trace
√

(X −HT)†(X −HT)

= Trace

(
1.49625 0.21045− 0.50807i

0.21045 + 0.50807i 1.07535

)
= 2.571-a relatively poor approximation

5.3 Quantum gate decomposition problem in this
research

In chapter 1, we mentioned that there is a mathematical transformation
from a high-level algorithm description into an output of a machine-dependent
circuit diagram description integrated into compilation process. As actually
a machine-dependent circuit is, according to the previous section, specified
by a set (library) of elementary gates and an threshold of precision for any
gate approximation, whereas an abstract algorithm description is made from
arbitrary quantum gates, this transformation turns out to be nothing but
gate decomposition, or in the mathematical view, unitary matrix decompo-
sition.

Based on the evaluation criterion, the problems we have to solve in this
research are:

1. Find decomposition methods bringing the accuracy lower than an ac-
ceptable threshold given by user for each arbitrary quantum gate in
the input algorithm.

2. Among these methods find the one that requires the least resources
for the output circuit. To measure the resourcess, in this research we
use the number of quantum gates used in the output circuit.

In the scope of this research, we do not have the ambition of decomposing
any arbitrary unitary matrices. Instead, we focus on the step of decompos-

33

ing unitary matrices corresponding to 1,2 -controlled gates and especially
unitary matrices corresponding to one qubit gates. Because all unitary op-
erations on arbitrarily multi bits gate can be expressed as compositions of
these gates[11], our program does not lose generality as a result.

5.4 Prominent difficulties definition

In this research, as it focuses only on decomposing unitary matrices for 1
and 2 -controlled gates and especially unitary matrices corresponding to one
qubit gates, the work can explicitly divided into 2 steps.

1. 1 and 2 -controlled gates decomposition step
This problem is solved by using the same method as in [11] for this
stage. Appendix 2 discusses this technique.

2. Arbitrary single qubit gate decomposition
This step takes a single qubit gate as the input and produces an ap-
proximating sequence of gates in the universal library set as the output.
We see this procedure is the same as a looking up procedure to find
out the “ nearest ” sequence for a given gate, according to a certain
distance function (an example is mentioned in the section 2) from a
search space of possible sequences. The problem is assuming we have
to generate and store all possible gates combinations as possible can-
didates, when the length of the candidate gate sequences increase, the
search space size grows exponentially. This results in not only the
time consumed for the looking up procedure probably growing expo-
nentially (if we cannot found an efficient search algorithm), but also
we may not have the ability of generating and storing all possible gate
sequences, and therefore we cannot even conduct any looking up pro-
cedure.
Figure 5.1 below shows how fast the number of possible gate sequence
cases grows with the length of the sequence, even with duplicated
instances removed: The number of cases double when the gate se-
quence length increases one. The library used in this case is the set of
{H,T, T−1} gates. See Appendix 1 for more details. In our implemen-
tation environment, the maximum length of a gate sequence which can
be generated and stored the whole instances set is 18, as shown in the
figure.
In this case, the storage required to store these gate sequence cases

also grows fast at the same pace. Even the minimum information
about a case of a gate sequence, the volume of the file which stores
the cases of gate sequence of the length 18 reaches 25 MB. Therefore,
even with powerful computers having the disk volume of 1000TB, by
a simple calculation, we see that storing all the cases of gate sequences

34

of the length more than 44 gates is impossible

Figure 5.1: Number of possible gate sequences grows exponentially with the
length of that sequence.

5.5 Some related research

Much work has been invested into the problem of decomposition of single
qubit gates. Colin P. Williams and Alexander G. Gray in [12] proposed a
genetic method to decompose unitary matrices of quantum gates by con-
sidering that a solution for decomposition is a chromosome and a gene is
a unitary matrix of a quantum gate in the library. They take advantage
of chromosome mutation, crossover and selection to avoid generating all
possible candidate solutions (as chromosome form). However, they only sig-
nificantly succeeded in the case of exact decomposition, i.e. when there is a
candidate sequence that has the same unitary matrix as the query gate.
Another powerful approach for this problem is attempting to create an algo-

rithm that efficiently implements the Solovay-Kitatev theorem, which allows
us to find an approximation for a target gate with a lookup-space-limited
enumerated looking up subroutine. In [13], M. Dawson and A. Nielsen dis-
cussed about an algorithm to approximate an arbitrary single-qubit quan-
tum gate using only H and T gates. The algorithm can be found in the
next chapter of this thesis. However, they had to assume that a adequate

35

preprocessing stage has been completed which allows us to find a basic ap-
proximation to an arbitrary unitary matrix for the bottom procedure of
their recursion. This basic stage encounters the difficulties we have indi-
cated: Exponential growth of the search space. However, simple analysis
of their algorithm and the Solovay-Kitaev theorem indicated that the effi-
ciency of the whole algorithm depends strongly on the basic approximation
stage, so we are encouraged can achieve something better than the “ suffi-
cient ” one. In this research, we actually inherit the algorithm proposed by
M. Dawson and A. Nielsen, and enhance its performance by applying new
techniques for the basic stage of matrix lookup.

5.6 Chapter summary

This chapter discussed the position of quantum gate decomposition prob-
lems in this research by considering the research outcome evaluation criteria
pointed out in the first chapter as well as the difficulties of this problem.
We also indicated the formula to calculate the precision of an approximated
quantum gate decomposition. In the next chapter, solutions for the prob-
lems defined in this chapter will be the main topic.

36

Chapter 6

Proposed Solutions

In this chapter, we start from giving an insight about the Solovay-Kitaev
theorem, which brings a potential approach for the problem of gate decom-
position, and its implementing algorithm. We then introduce our techniques
to improve the performance of the implementing algorithm. The results of
our method will be discussed in Chapter 8.

6.1 Inherited techniques analysis

6.1.1 The Solovay-Kitaev (SK) theorem

The basic goal of the SK algorithm is to take an arbitrary quantum gate
U and find a good approximation to it by decomposing it into a sequence
of gates g1, . . . , gm drawn from some finite set G which in the context of
compiler, can be called the gate library set. The SK theorem may be stated
as follows:
The Solovay-Kitaev theorem. Let G be an instruction set for SU(d),
and let a desired accuracy ε > 0 be given. There is a constant c such that
for any U ∈ SU(d) there exists a finite sequence S of gates from G of length
O(logc (1/ε)) and such that distance(U, S) < ε.

6.1.2 Current implementing algorithm (by Dawson-Nielsen)

We present the main ideas used in the Solovay-Kitaev algorithm by Daw-
son and Nielsen by a few lines of pseudo code with a detailed explanation
following.

function Solovay-Kitaev(Gate U, depth n)

if (n == 0)

1: Return Basic Approximation to U

else

2: Set Un−1 = Solovay-Kitaev(U,n− 1)

37

3: Set V , W = GC-Decompose(UU †n−1)
4: Set Vn−1 = Solovay-Kitaev(V ,n− 1)
5: Set Wn−1 = Solovay-Kitaev(W,n− 1)
6: Return Un = Vn−1Wn−1V

†
n−1W

†
n−1Un−1;

A detailed explanation and proof of this algorithm requires a very strong
background about both quantum computation and mathematics and can be
found in [14], so in this thesis, we only summarize the fundamental points
which make the algorithm work, adapting the explanation from [13]

1. Input:
An arbitrary single-qubit quantum gate specified by a unitary matrix
U , which we desire to approximate, in SU() form, i.e U ∗ U † = I and
det(U) = 1, and a non-negative integer n, which implies the accuracy
level of the decomposition for U .

2. Work:
The Solovay-Kitaev function is recursive, so that to obtain an εn-
approximation to U , it will call itself to obtain εn−1-approximations
to certain unitaries. The recursion terminates at n = 0, beyond which
no further recursive calls are made:
if (n == 0)
Return Basic Approximation to U
In order to implement this step we assume that a preprocessing stage
has been completed which allows us to find a basic ε0-approximation
to arbitrary U ∈ SU(2).

3. Output:
The function returns a sequence of instructions which approximates U
to an accuracy εn, where εn is a decreasing function of n, so that as
n gets larger, the accuracy gets better, with εn → 0 as n → ∞, as-
suming that the preprocessing stage on line 1 of the pseudo code can
approximate U to a sufficient accuracy capprox. Let ln be the length
of the sequence of instructions returned by Solovay-Kitaev(U, n),
and let tn be the corresponding runtime of the search algorithm. We
describe these factors in detail below

εn =
1

c2approx

(
ε0c

2
approx

)(3
2)

n

. (6.1)

ln = O(5n) (6.2)

tn = O(3n). (6.3)

and therefore we have the following equations about the relation be-
tween lε, tε, n and ε

38

n =


ln
[

ln(1/εc2approx)

ln(1/ε0c2approx)

]
ln(3/2)

 . (6.4)

lε = O
(

lnln 5/ ln(3/2)(1/ε)
)

(6.5)

tε = O
(

lnln 3/ ln(3/2)(1/ε)
)
. (6.6)

It is shown that lε and tε are both polylogarithmic in (1/ε), giving a
pretty proof for the Solovay-Kitaev theorem.

6.1.3 Promising improvement indication

1. From the algorithm pseudo code, we see that the Solovay-Kitaev(Gate
U, depth n) program has to call the basic approximation subroutine
3n times, whereas for an acceptable accuracy ε very small, n can not
be too small (usually around 4 or 5), according to equation 6.4. As
a result, the running time of this basic subroutine affects the running
time of the whole function a great deal, especially if the function is
itself a part of the compilation process of a quantum circuit with many
gates need to decompose. The solution for this point is described in
section 6.3

2. More important, having a look at equations 6.1 and 6.2, we come
up with the following conclusion: If we can reach a higher precision
than the sufficient one for the basic matrix looking up stage (by ex-
tending the looking up space over the limitation of the space of gen-
eratable matrices set by a separate method), the function εn of
n will decrease faster. This means, for instance, instead of running
the function Solovay-Kitaev (Gate U, 4) we can run the function
Solovay-Kitaev(Gate U, 3) with improved basic approximation to
get the same precision outcome. As a result, according to equation
6.2, the outcome sequence should have significantly shorter length, so
the outcome of the compilation process for a quantum gate requires
fewer resources. However, to give the basic approximation step more
accuracy, we have to widen the gate (or equivalently matrix) lookup
space, i.e making it possible to check longer gate sequences as candi-
date gates, and we encounter the problem of limitation of resource to
generate and store all of those candidate gates as described in Chapter
5. The solution for this approach is described in section 6.2

39

6.2 Solutions for search space expansion (SSE) prob-
lem

6.2.1 Proposed algorithm enhancing techniques

The above solution is feasible only if we have generated all the instances of
gate sequences and store them in a database as 3-D points (or equivalently
a 3-D vector). However, as mentioned in section 6.1, if we want to have a
discovery looking up procedure on the set of gate sequences when we do not
have enough time and space resource to generate and store all of them, we
obviously need another method.
In this research, we propose the following solution to extend the range of
matrix point search without explicitly generating and storing all of the candi-
date gate sequences having relatively large length (up to 56 gates/sequence).

1. Sample a sufficient number of instance of gate sequence, then store
them as a set of 3-D points. For example, in the case of gate sequence
length=28, we randomly sample a set of 100000 3-D points. Call the
sequence length l1

2. For each looking up procedure, we conduct the search on the sample
point set (using advanced technique like the technique of GNAT de-
scribed in the previous section), and collect the points in sample set
which have the distance to the query point smaller than a certain ε1
value into a result set.

3. For each point in the result set, we generate the vicinity points. These
are hopefully have a small distance to the query point by the following
method:
(a) Split (partition) the gate sequence of that point into a certain

number of subsequence. For example, with a point representing
a gate sequence of length 30, we can split the sequence into 3
parts of length 10 subsequences, for a gate sequence of length 28,
we can split the sequence into 2 parts of length 14 subsequences.
Call the length of each sub sequence l2

(b) For each subsequence called p1 in the 3-D space, considering it as
a gate with a respective unitary matrix, calculate its coordinates
in 3-D space. Search it neighbour points (distance to p1 limited
by a certain value ε2) on the stored point set for gate sequences
of length l2.

(c) Merge the results gate sequences and we have a potential candi-
date sequences of length l1

4. Linear search for nearest points of the query from the set of generated
candidate point.

40

Pseudo-code

function Ret=SSE-Search(Gate U, precision ε, precision ε1,
precision ε2, PointSet samples)

PointSet firstResults = GNAT-Search(U,ε1,samples);
foreach Point point in firstResults

PointSet partitions = Split(point);
PointSetSet V icinityOfPartitions = GNAT-Search-For-Set(partitions,ε2);
PointSet cloud = Merge(V icinityOfPartitions);
foreach Point pt in cloud

if Distance(pt,U) < ε then

Add-To-Result(p,Ret);
endif

endforeach

endforeach

endfunction

Analysis

Our solution is based on the supposition that when approximating the gate
sequence merged by 2 parts V1V2, the concatenating sequences of U1U2 are
potential candidates, where U1 is a closed approximation for V1 and U2 is
a closed approximation for V2. We present the mathematical proof for this
supposition as following:
Given

D(U1, V1) ≤ ε1

D(U2, V2) ≤ ε2

We have

D(U1U2, V1V2) ≤ D(U1U2, V1U2) +D(V1U2, V1V2)

The right side = D(U1, V1) +D(U2, V2)

≤ ε1 + ε2

Since ε1 and ε2 are relatively small (U1 is a closed approximation for V1
and U2 is a close approximation for V2), it is possible to say that a sequence
U1U2 is a relatively close approximation for V1V2. With a large number of
sequences U1 and U2 and their combinations U1U2, the probability to have
a very close approximation for V1V2 is relatively high.

41

6.2.2 Further development

One of potential point in our proposed technique is, similar to the ordinary
SK algorithm, the idea of making a “ cloud ” of vicinity points around a
candidate point. This, using our technique, can be applied more than once,
hierarchically, allowing the basic decomposition procedure to reach much
higher precision. However, applying this technique we have to suffer that the
running time gets bigger as the number of linear search subroutine increases.
For instance, in the following pseudo-code, the procedure Discover-Search

subroutine (using the new technique) plays the same role as the its invoked
procedure GNAT-Search (using the old technique). We call this technique
recursive-SSE in the rest of this thesis.

Pseudo-code

function Ret=recursive-SSE-Search(Gate U, precision ε, precision

ε1, precision ε2, PointSet samples)

PointSet resultSet1 = Discover-Search(U,ε,ε1, ε2);
foreach Point point in resultSet1

PointSet partitions = Split(point);
PointSetSet V icinityOfPartitions = Discover-Search-For-Set(partitions,ε2);
PointSet cloud = Merge(V icinityOfPartitions);
foreach Point pt in cloud

if Distance(pt,U) < ε then

Add-To-Result(p,Ret);
endif

endforeach

endforeach

endfunction

6.2.3 Improving the entire system performance

The algorithm by M. Dawson and A. Nielsen is relatively crude and far from
optimal as it almost quintuples the length of the gate sequence answer on
each level of recursion. Therefore, if we can extend the basic search range
by a different method like the method we proposed, we can make the
basic approximation much more efficient, allowing us to reduce the answer
gate sequence length to reach a desired accuracy, thanks to reducing the
level of recursion.

42

6.3 Solution for large-size database matrix looking
up subroutine speeding up

6.3.1 From the matrix look up problem to a geometry point
search problem

Matrix and Vector relation

According to the following equations, we have a 1-1 map between the set
of SU(2)(2 × 2 special unitary matrix) and the 3-D vector space inside the
sphere ((0, 0, 0) , 2π)

∀U ∈ SU(2)⇐⇒ ∃ only one ~v = (x, y, z) ∈ R3

U = e−i/2∗~v.~σ

~v.~σ = x ∗X + y ∗ Y + z ∗ Z

‖~v‖ ≤ 2Π

X,Y, Z: Pauli Matrices
We call ~v the specifying vector for matrix U

The properties of a distance function

Given matrices

U1, U2, U3 ∈ SU(2)

Call the distance function of a unitary matrix D(U1, U2). The following
properties have to be satisfied as shown in the previous chapter, the same
as in the case of geometric distance, and can be rewritten as function of
coordinates in the 3-D space.

D(U1, U1) = D(U2, U2) = 0

D(U1, U2) = D(U2, U1) ≥ 0

D(U1, U2) +D(U2, U3) ≥ D(U1, U3)

Because U1, U2 can be mapped onto ~v1, ~v2 ∈ R3, the matrix search problem
can be equivalently treated as geometric search in 3-D space, which has been
researched widely.

6.3.2 Help for the entire system performance

Applying the algorithm proposed by M. Dawson and A. Nielsen, the 2x2
unitary factoring procedure algorithm has linear run time with the run time
of the matrix search routine described in the first section by this formula.
However the linear proportion is very high (' log (1/ε)2.77) so the run time

43

of the matrix search procedure has a considerable effect on the whole SK
decomposition algorithm run time. That means we have to find a time-
efficient algorithm for that procedure. By considering the problem as geo-
metric search, we can take advantage of previous research results as well as
original research.

6.3.3 Geometric Near-neighbour Access Tree data structure

Except for linear search, the main trend of search algorithms is turning
geometric searches into tree-based searches by space-partitioning techniques
in order to reduce the cost of searching to O(log n) in the best or average
case. Some popular solutions that should be mentioned here are R-Tree
and Kd-Tree [15]. These approaches divide the search space into clusters
specified by coordinates in the space. This approach probably results in bad
effect in this case (matrix search) because that kind of clustering only works
well when the distance function is Euclidean distance, whereas the distance
function in the case of matrix points is little different.

6.3.4 Geometric near-neighbour access tree (GNAT)

This approach comes from Brin[16].The main idea of GNAT is partitioning
the search space by using clusters associated with a number of fixed points
called splitting points

Data structure

• Splitting points. Chosen from the search space. The selection algo-
rithm is an open topic of research, but the desire is picking the points
as far from each other as possible.
• Space cluster. All the points in the search space are divided into cluster

associated with splitting points. In more detail, the cluster associated
with a splitting point (called sp) is the set of points which has sp as
the nearest splitting points in the splitting point set. A cluster with its
own splitting point provides an imagination of a nucleus with the atom
at its centre and electrons around. Figure 6.1 shows how a 2-dimension
space divided into clusters with atoms are splitting points.

44

Figure 6.1: A simple GNAT with clusters. Adaptation of image from [16].
The points with surrounding red circle are the splitting points of the same
level clustering.

Search algorithm

The main idea of this algorithm based on tree pruning-and-traversal tech-
nique to reduce the candidate points to be scoured. We can model this
algorithm as following:

1. Data structure as a tree
Recall the space clusters. Each point cluster separates from same-level
others (in term of clusters generated from a set of splitting points) and
recursively contains a number of sub-clusters, or, at terminal level,
points. This give us an perfect image of a tree structure, with nodes,
sub-trees and leaves. The nearest neighbours search problem can be
seen as a tree traversal problem, which we traverse from tree root to
tree leaves for the answer.

2. Tree pruning and traversal
As in the geometric nearest neighbours search problem, there is no
comparison metric can be used to search on the tree like in the case
of scalar value search: one path from the tree root to a tree leaf, we
can only attempt to proximate this scenario by pruning the tree on
each traversal step. A method of using pre-computed metadata for

45

tree pruning purpose is discussed below. Consider we have searching
for nearest neighbours {p} of a query point x with D(p, x) ≤ ε
• Suppose we are visiting a tree node (an abstract word for a clus-

ter C, with the corresponding splitting point s). We have the
distance D(s, x) = d.
• Applying the triangle inequality, we can conclude that a point
p with D(p, x) ≤ ε must relax the inequality d − ε ≤ D(p, s) ≤
d+ ε. Thus p can not exist in a cluster Q, which Range(C,Q) ∩
[d− ε, d+ ε] = ∅. As a result, we do not need to take clusters
{Q} into account afterwards.

The rest of tree traversal steps are rather identical to any tree traversal.
We conduct Deep First Search on the tree, ignoring eliminated sub-tree
generated from clusters {Q}, until reaching tree leaves, which present
lowest level clusters. In a cluster like these, we simply calculate the
distance of each point and the query point to determine it is an answer
or not.

Pseudo-code

function Ret=GNAT-Search(Gate U, precision ε, PointSet space)

if Size-Of(space) <= Low-Threshold

Ret = Linear-Search(U,ε,space);
return;

elseif

PointSet SplittingPoints = Get-Splitting-Points(space);
PointSetSet clusters = Get-Cluster-Around-Splitting-Points(space);
PointSetSet candidateClusters = clusters;
foreach Point sp in SplittingPoints

d = Distance(sp,U);
foreach PointSet cluster in clusters

rmax = Max-Distance(sp,cluster);
rmin = Min-Distance(sp,cluster);
if [d− ε, d+ ε] ∩ [rmin, rmax] = ∅ then

Remove-From-Candidates(candidateClusters,cluster);
endif

endforeach

endforeach

foreach PointSet candidateCluster in candidateClusters
Ret = Ret ∪ GNAT-Search(U,ε,candidateCluster);

endforeach

endif

endfunction

46

Analysis

This algorithm’s main disadvantage is the running time required for the
data set processing stage to calculate the max and min distance from each
splitting point to each cluster. However, in this project, for only one data
set there are large numbers of search procedures, therefore this disadvantage
does not matter much. The average running time required for one search
procedure, the most important performance attribute, is conversely much
shorter than the linear search time. This result comes from experiments
and contributed to the significant reduction of candidate clusters, despite of
having the same theoretical complexity.

47

48

Chapter 7

Implementation

In order to make the system work not only on powerful computers but also on
resource-limited machines, towards tablets or even smart phones, we choose
the following environment to implement the entire system.

Table 7.1: Implementation environment

Platform and software environment

OS Ubuntu 10.04 virtual machine
Virtual Environment manager VirtualBox 4.1 on Windows 7 Home Premium

Virtual memory 2076 MB
Virtual disk 30 GB

JDK Java version 1.6.018
JavaVM JRE 6
Octave Octave 3.2.3

Java-Octave binder JavaOctave 0.6.1 from Kenai Project
Parser constructor Java Compiler Compiler version 5.0
Java Tree Builder JTB 1.3.2

Hardware environment

CPU Intel(R) Core(TM) i3 3.00GHz

Memory 4 GB

HDD 228 GB

In the rest of this chapter, we present the system architecture of the whole
software, which realizes the described techniques in the table 7.2. Each layer
corresponds to a module in the whole system, which is invoked by the upper
layer and invokes the lower layer to complete its work.

49

Table 7.2: Software layered architecture

Compilation program

Lexical Analyser-Parser-Output generator
JavaCC + JTB

Logical Quantum Circuit Builder
Pure Java

Quantum Gate Decomposer
Pure Java

Subroutine of the Solovay-Kitaev algorithm
Octave + Java

Platform
JVM + Octave Engine

Operating System

50

Chapter 8

Experiments and Evaluation

8.1 Orientation

In this chapter, we discuss the evaluation process for the system. As this
system is above all, a software, it has to be evaluated as a concrete entity.
This evaluation is conducted based on the qualitative criteria indicated in
chapter 1. However, as the system construction involves many research
topics, and leads to solutions to overcome difficulties, it is also necessary to
evaluated these solutions separately. Because the proposed solutions are all
designed towards quantitative performance, their evaluation has to be done
based on the quantitative criterion, also indicated in chapter 1.

8.2 System overall evaluation

The system currently works fair, with the output format also written in
QAS, and only using library gates. The time consumed for compilation
process of an input program containing up to 25 quantum gate is no longer
than 1 hour, almost of time consumed is for the gate decomposition task.

8.3 Research points evaluation

8.3.1 Evaluation of search space expansing method

1. Comparison objective:
M. Dawson and A. Nielsen’s algorithm with traditional basic approxi-
mation step, i.e. conduct the matrix looking up procedure on entirely
generated, stored instances of gate sequences of length no larger than
l0 = 18

2. Comparison value:
Gate sequence length required to achieve a desired accuracy (distance
between query matrix and returned matrix of the algorithm) ε0. Often

51

ε0 ≈ 10−4.
3. Evaluation method:

Generate a sufficient number of special unitary random matrices. Con-
duct the M. Dawson and A. Nielsen algorithm with the traditional ba-
sic approximation step (called old technique) and with the proposed
search range widening methods described in section 6.2 used for the
basic approximation step (called SSE and recursive SSE technique re-
spectively). Collect the accuracy and length of gate sequences returned
for each technique. Statistically analyse the collected data. We also
plot the results to provide a visual assessment for each technique.

4. Experiment and Evaluation results:
We randomly generate a number of special unitary matrices, say 25,
corresponding to 25 quantum gates, running the M. Dawson and A.
Nielsen algorithm for the Solovay-Kitaev decomposition (6.3.4) with
n = 4 with the old technique, n = 3 with the SSE technique and
n = 2 with the developed new method, to have each obtain an accept-
able accuracy. With the old method, the maximum length of the gate
sequence outcome of basic gate approximation (decomposition) is 18,
whereas the respective numbers of SSE technique and recursive SSE
technique are 28 and 56.
The collected data is in the table 8.1 below, with each row corre-

sponding to a query gate, the length of the gate sequence returned by
the algorithm with the old technique, the accuracy to the query gate of
gate sequence returned by the algorithm with the old naive technique,
the length of gates sequence returned by the algorithm with the SSEs
techniques, the accuracy to the query gate of gates sequence returned
by the algorithm with the SSEs techniques.
In practice, as the returned gate sequence length is almost fixed by

the algorithm itself (in case of the old technique, the length of the re-
turned sequence is about 9000, whereas in case of the SSE technique,
this number is about 3000, and in case of the recursive SSE technique,
this number is about 1300) so we can consider that the SSE technique
has significantly compacted the length of the resultant gate sequence
by a factor around 3 and the recursive SSE technique has significantly
compacted the length of the resultant gate sequence by a factor around
7, compared to the old technique.

Now we deal with the accuracy outcome of the 3 techniques. As-
sume that the difference of the accuracy of the 3 techniques is ap-
proximately normal distributed so that we can use the Student paired
test to calculate the confidence interval for the mean of it. According
to the formula in [17] and the table of critical value for Student’s dis-
tribution at http://www.scribd.com/doc/28555364/Student-s-t-Test-
Table, we have the 95% confidence interval of the mean of difference
of the accuracy of the SSE technique compared to the old technique is

52

http://www.scribd.com/doc/28555364/Student-s-t-Test-Table
http://www.scribd.com/doc/28555364/Student-s-t-Test-Table

Table 8.1: Outcome gates sequence length and accuracy by old and new
method for randomly chosen queries

Query Old technique SSE technique Recursive SSE technique
Result length accuracy Result length accuracy Result length Accuracy
1 9472 9.00E-05 3154 7.16E-05 1256 0.00020304
2 9253 0.00057555 3190 0.00024060 1264 0.00038174
3 8857 0.00034084 3146 9.20E-05 1282 0.00029360
4 8885 0.00014167 3250 4.54E-05 1180 8.07148E-05
5 9079 0.00025919 3092 4.17E-05 1280 0.00024141
6 9304 0.00018723 3210 5.16E-05 1292 0.00018779
7 8984 0.00050555 3150 0.00022057 1324 0.00016339
8 9029 0.00075836 3114 0.00015314 1294 0.00067551
9 9066 0.00021418 3216 0.00023754 1284 0.00044422
10 9326 0.00044602 3140 0.0002364 1268 0.00017198
11 9139 0.00079344 3170 0.00016378 1288 0.00021800
12 8566 0.00031750 3234 0.00034421 1312 0.00026985
13 9432 0.00051561 3294 0.00073163 1274 0.00019819
14 8827 0.00039050 3190 0.00016518 1300 4.03721E-05
15 8447 0.00012512 3116 0.00018926 1320 0.00011416
16 9127 0.00028644 3286 0.00011417 1298 0.00040065
17 9344 0.00014221 3160 7.54E-05 1284 0.00022579
18 9293 0.00026654 3178 9.91E-05 1294 7.83317E-05
19 9021 0.00102097 3174 0.00051386 1182 0.00033873
20 9484 0.00042235 3234 0.00030455 1288 0.00022479
21 9142 0.00019897 3256 0.00039183 1296 0.00027780
22 9072 0.00027672 3194 0.00029566 1178 0.00023652
23 8760 0.00013384 3244 0.00013375 1250 0.00023858
24 9087 0.00036537 3106 0.00029341 1260 0.00029718
25 9058 0.00058659 3058 9.73E-05 1322 0.00014402

Mean 9082.16 0.00037443 3182.24 0.00021214 1274.8 0.00024585
STDEV 261.488317 0.0002343 60.8038376 0.00016081 40.64480287 0.00013358

53

about
(
7.40× 10−5, 2.50× 10−4

)
. This result gives strong statistical

evidence that we can expect a higher accuracy by using the SSE tech-
nique, compared to the old technique. Similarly, applying the same
test to the recursive SSE technique and the old technique outcome,
we have the 95% confident interval of the mean of difference of the
accuracy of the SSE technique compared to the old technique is about(
3.55× 10−5, 2.22× 10−4

)
. This result also gives strong statistical ev-

idence that we can expect a higher accuracy by using the recursive
SSE technique, compared to the old technique.

We also conducted experiments of each technique for most-used quan-
tum gates decompositions, such as gates int the well-known quantum
Fourier transform subroutine. For example, when decomposing the
gates in the quantum Fourier transform having the corresponding uni-

tary matrix of R(k) =

(
1 0

0 e2iπ/2
k

)
with k = 2 or k = 3, the old

technique even may not converge to an enough accuracy, whereas the
new methods proposed in this thesis reach high accuracy. The table
8.2 shows these differences. However, this still needs further work for
verification.

Table 8.2: Gates in Fourier transform circuit decomposition

R(2) R(3)
Old technique outcome accuracy 0.001243 0.00182

Old technique outcome sequence length 8858 9012
SSE technique outcome accuracy 2.175× 10−13 5.306× 10−13

SSE technique outcome sequence length 1302 1266
recursive SSE technique outcome accuracy 1.4161× 10−4 4.8444× 10−4

Recursive SSE technique outcome sequence length 3146 2582

We also conducted an experiment plotting the relation between the
Solovay-Kitaev decomposition outcome gate sequence length and ap-
proximation accuracy with different value of parameter n in the func-
tion 6.3.4 for the new techniques and the old technique (figure 8.2) on
another set of test cases, in order to visualize the efficiency of each
technique. The plot also visually supports the conclusion that our
proposed techniques is significantly better than the old one.

8.3.2 Evaluation of Geometric Near-neighbour Access
Tree in matrix point looking up

(a) Comparison objective:
Linear look up procedure for matrices having distance to the

54

query matrix no larger than a certain value ε
(b) Comparison value:

The time to look up an answer matrix in the same database is
compared

(c) Evaluation method:
Generate a sufficient number of random matrices. Conduct the
looking up procedure by the linear method and by the Geometric
Near-neighbour Access Tree method, collecting the average time
required for each technique. Statistically analyse the collected
data.

(d) Experiment and Evaluation results:
The collected data is presented in the chart below. The chart
compares the average time required to complete nearest neigh-
bour search for 120 query points in different sizes of search space.

Figure 8.1: Time required: GNAT vs Linear search

From the chart, the large difference between the 2 techniques
can be clearly recognized.

55

Figure 8.2: Approximation accuracy vs length of outcome gates sequence

56

Chapter 9

Conclusion and future work

In this work, we have successfully modelled a general quantum circuit model
in a programming language, and constructed a compiler which has the abil-
ity to translate this language into several output formats. We also proposed
an improvement to M. Dawson and A. Nielsen’s algorithm for the Solovay-
Kitaev theorem by reducing the number of gates used to approximate an
arbitrary single qubit gate to acceptable accuracy by at least a factor of
about 3 or even 7 by extending the search space for the basic approximation
stage of this recursive algorithm to get higher accuracy at this step, which
remarkably increases the accuracy of the whole algorithm. This improve-
ment is especially seen in the decomposition of gates in the quantum Fourier
transform circuit, making it more significant. The run time required for the
approximation procedure was also taken into account. This work found a
very efficient method to reduce the procedure by improving the basic step of
the matrix looking up subroutine by solving it as a geometric search problem
and taking advantage of the previous work on that field like [16].
In the future, besides giving more features to the language in order to

meeting user requirements (which are getting larger), we will concentrate
on composing a more efficient algorithm for the gate decomposition prob-
lem to come up with a lower bound for the Solovay-Kitaev theorem, toward
multi-qubit gate efficient decomposition. The phase effect removal on gate
decomposition is also one of the target. It is a big remaining problem. We
will also work on analysing the current results to direct future work.

57

58

Acknowledgement

First and foremost, I would like to express my gratitude to my supervi-
sors: Professor Hideyuki Tokuda, Professor Jun Murai, Associate Profes-
sor Hiroyuki Kusumoto, Professor Osamu Nakamura, Associate Professor
Kazunori Takashio, Associate Professor Rodney D. Van Meter III, Asso-
ciate Professor Keisuke Uehara, Associate Professor Jin Mitsugi, Lecturer
Jin Nakazawa.
Especially, I would like to express my deepest gratitude to Associate Pro-
fessor Rodney D. Van Meter III and Doctor Clare Horsman, who gave me
fundamental knowledge in the field of Quantum Computation and Quantum
Information, as well as enthusiastically supported me in this project from
the very beginning to the end. Without their help, I could not finish this
thesis.
I thanks all my fellow in AQUA lab: master student Shota Nagayama,
bachelor students Kaori Ishizaki, Yasuharu Miyata, Shoichiro Fukuyama,
Iori Mizutani, Masakazu Fujimori, Koji Murata, and Tomoki Sugiyama for
their help during my semesters in AQUA. In particular, I would like to
thank AQUA members who established and maintained server machines.
Their work really made my project much easier.

59

60

Appendix A

Frequently used quantum
gates

In this appendix, we present frequently used quantum gates, which are men-
tioned in the thesis as useful building blocks in the design of quantum cir-
cuits. These gates are presented with their name, denoting symbol and the
characteristic unitary matrix in the table A.1. For multi-qubit gates such as
CNOT and Toffoli gates which may make readers confused, a comprehensive
explanation is as follows:
• Controlled-NOT (CNOT) gate

Diagram explanation: If and only if the control qubit |q0〉 is set to
|1〉, the target qubit |q1〉 is flipped (from |0〉 to |1〉 and vice-versa)

Figure A.1: CNOT gate

• Toffoli gate
Diagram explanation: If and only if the 2 control qubits |q0〉 and |q1〉
are set to |1〉, the target qubit |q1〉 is flipped (from |0〉 to |1〉 and
vice-versa)

Figure A.2: Toffoli gate

61

Table A.1: Frequently used quantum gate

Name Denoting symbol Characteristic unitary matrix

Single qubit gate

Identity gate I

(
1 0
0 1

)
Pauli-X gate X

(
0 1
1 0

)
Pauli-Y gate Y

(
0 −i
i 0

)
Pauli-Z gate Z

(
1 0
0 −1

)
Hadamard gate H

1√
2

(
1 1
1 −1

)
π

4
gate T

(
1 0

0 eiπ/4

)
α phase shift gate Sα

(
eiα 0
0 eiα

)
2 qubits gate

Controlled-NOT CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


3 qubit gate

Controlled-Controlled-NOT Toffoli



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



62

Appendix B

Barenco decomposition
method

In this appendix, we summarize the decomposition technique applied for
one and two controlled quantum gate, presented in [11]. This decomposi-
tion technique provides a way to decompose a controlled quantum gate into
the sequence of elementary gates drawn from the library of Controlled-Not
gate, and arbitrary single qubit gates upto global phase.

1. One-Controlled gate
For a unitary 2 × 2 matrix W , a ∧1(W) (one-controlled gate of W)
gate can be simulated by a network of the following form.

v
W

= l l
v v

A B C

E

where A, B, and C ∈ SU(2); E is unitary.

The formulae to calculate unitary matrices A, B, C and E, assum-
ing that W = Rz(α) · Ry(θ) · Rz(β) · Phase(δ) are:

A = Rz(α) · Ry(
θ

2
) (B.1)

B = Ry(−θ
2

) · Rz(−
α+ β

2
) (B.2)

C = Rz(
β − α

2
) (B.3)

E = Rz(−δ) · Phase(δ2) (B.4)

63

2. Two-Controlled gate
For any unitary 2 × 2 matrix U , a ∧2(U) (two-controlled gate of U)
gate can be simulated by a network of the following form

v
v

U

= l lv v
v v v

V VV †

Where V is unitary and V 2 = U . As the result for two-controlled
gates only includes CNOT gates and one-controlled gates, we can con-
tinue the decomposing process by applying the one-controlled gate de-
composition (summarized above) for them to obtain the final results
consisting of single qubit gates, CNOT gates and phase gates.

64

Bibliography

[1] Peter Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing
Issue 5, 26, October 1997.

[2] Piotr Gawron. http://www.quantiki.org/wiki/Bloch_sphere, 2005.
Online; accessed 19-January-2012.

[3] W. K. Wooters and W. H. Zurek. A single quantum can not be. Nature,
299:802, 1982.

[4] Michael A.Nielsen and Isaac L.Chuang. Quantum computation and
quantum information. Cambridge University Press, 2005.

[5] David P. DiVincenzo. The physical implementation of quantum com-
putation. Fortschritte der Physik, 48:771–784, 2000.

[6] Tatsuya Hagino. http://www.tom.sfc.keio.ac.jp/~hagino/web10/,
2010. Web Text Processing lectures. Accessed 19 January 2012.

[7] Rich Maclin. http://www.d.umn.edu/~rmaclin/cs5641/Notes/,
2009. CS5641 Compiler Design at University of Minnesota Duluth.
Accessed 19 January 2012.

[8] D. Orleans and K. Lieberherr. Dj: Dynamic adaptive programming in
java. Metalevel Architectures and Separation of Crosscutting Concerns,
pages 73–80, 2001.

[9] Rodney D. Van Meter III. http://web.sfc.keio.ac.jp/~rdv/

quantum/aqua-tools/AAAREADME.txt, 2006. Aqua Tool online
README. Accessed 19 January 2012.

[10] Alexander Slepoy. Quantum gate decomposition algorithms. SANDIA
REPORT, page 7, 2006.

[11] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter. Elementary gates
for quantum computation. Physical Review A, 52(5):3457, 1995.

[12] C. Williams and A. Gray. Automated design of quantum circuits. Quan-
tum Computing and Quantum Communications, pages 113–125, 1999.

[13] C.M. Dawson and M.A. Nielsen. The Solovay-Kitaev algorithm. Arxiv
preprint quant-ph/0505030, 2005.

[14] Aram Harrow, 2001. Bachelor Thesis of Science in Physics, Mas-
sachusetts Institute of Technology.

[15] T.K. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dy-
namic index for multi-dimensional objects. In Proceedings of the 13th

65

http://www.quantiki.org/wiki/Bloch_sphere
http://www.tom.sfc.keio.ac.jp/~hagino/web10/
http://www.d.umn.edu/~rmaclin/cs5641/Notes/
http://web.sfc.keio.ac.jp/~rdv/quantum/aqua-tools/AAAREADME.txt
http://web.sfc.keio.ac.jp/~rdv/quantum/aqua-tools/AAAREADME.txt

International Conference on Very Large Data Bases, pages 507–518.
Morgan Kaufmann Publishers Inc., 1987.

[16] S. Brin. Near neighbor search in large metric spaces. Proceedings of
the 21th International Conference on Very Large Data Bases, pages
574–584, 1995.

[17] http://mlsc.lboro.ac.uk/resources/statistics/Pairedttest.

pdf. Student’s t-Tests.

66

http://mlsc.lboro.ac.uk/resources/statistics/Pairedttest.pdf
http://mlsc.lboro.ac.uk/resources/statistics/Pairedttest.pdf

	Abstract
	Introduction
	Motivation
	Research purpose
	Proposed approach
	Main contributions
	Thesis structure

	Background
	Basic concepts of quantum information and computation
	Quantum system and quantum states
	Quantum bit
	Quantum state evolution
	Quantum entanglement
	Quantum measurement

	Quantum circuit model
	Language and compiler
	Context-free grammar
	Programming language and Compiler design

	Chapter summary

	QAS-Quantum algorithm scripting language
	Why QAS?
	Language introduction
	Language features
	Program structure
	Language specification
	Notation
	Grammar
	Sample Program Analysis

	Program compilation overview
	Chapter summary

	Compiler construction process and output format
	QAS Program compilation basic steps
	QAS compiler construction methodology
	Tools
	Output format

	Key technical problems
	The concept of quantum gate decomposition
	Quantum gate decomposition accuracy measurement method
	Quantum gate decomposition problem in this research
	Prominent difficulties definition
	Some related research
	Chapter summary

	Proposed Solutions
	Inherited techniques analysis
	The Solovay-Kitaev (SK) theorem
	Current implementing algorithm (by Dawson-Nielsen)
	Promising improvement indication

	Solutions for search space expansion (SSE) problem
	Proposed algorithm enhancing techniques
	Further development
	Improving the entire system performance

	Solution for large-size database matrix looking up subroutine speeding up
	From the matrix look up problem to a geometry point search problem
	Help for the entire system performance
	Geometric Near-neighbour Access Tree data structure
	Geometric near-neighbour access tree (GNAT)

	Implementation
	Experiments and Evaluation
	Orientation
	System overall evaluation
	Research points evaluation
	Evaluation of search space expansing method
	Evaluation of Geometric Near-neighbour Access Tree in matrix point looking up

	Conclusion and future work
	Frequently used quantum gates
	Barenco decomposition method

