
Existing	quantum	computer	processors	have topological	limitations on	the	execution	of	CNOT	gates.	Qubit	and	connection	
errors	lower	fidelity	of	execution	result.	Programmers	need	to	generate	programs	that	are	high	in	fidelity	and	adapted	to	
topology,	but	this	is	difficult.	It	is	possible	to	apply	graph	embedding	and	solve	the	shortest	path	problem in	which	the	
adjacency	matrix	containing	the	topology	and	error	rate	information	is	taken	as	the	host	graph and	the	CNOT	utilization	

requested	by	the	program	to	be	executed	is	incorporated	as	a	guest	graph.	By	choosing	the	shortest	path	here,	
programmers	can	create	a	program	with	higher	fidelity with	executable	Qubits	allocation.	This	research	reduces	waste	of	

a	lot	of	human	resources,	and	programmers	can	obtain	more	high	fidelity	execution	results.

An Automated Tool for Mapping Program
Variables to Qubits on the IBM Q Topologies

Ⅰ.	The	Circuit	Design	Limitation	Caused	by	Processor	Topology

Shin	Nishio *,	Takahiko	Satoh†,	and		Rodney	D.	Van	Meter ‡

Ⅱ.	Mapping	Program	Variables	to	Qubits	

http://aqua.sfc.wide.ad.jp

Q4 Q0

Q1

Q2

Q3

The number	of	qubits in	the	processor	of	a	quantum	computer	is	increasing	day	by	day	[1].	
However,	it	is	difficult	to	generate	the	entangled	state	in	any	physically	non-adjacent	qubits	
on	the	processor.	In	fact,	all	processors	created	by	IBM	are	limited	in	the	use	of	CNOT	gates.	A	
CNOT	has	a	control	qubit	and	a	target	qubit,	but	in	the	IBM	quantum	processors,	the	choice	
of	qubit	for	each	role	is	constrained.
This	graph	of	limitation	of	use	of	the	CNOT	gate	is	referred	to	as	the	processor	topology.	For	
example,	Fig.	1	and	Fig.	2 show	the	topologies	of	IBM	QX2	and	QX4[2].	We	have	created	tools	
for	performing	similar	mapping	[3]	in	prior	work	[4].	That	work	dealt	with	non-neighboring	
qubits,	but	not	gate	polarity.	

IBMQX2	and	IBMQX4	are	
processors	with	the	same	number	
of	qubits.	
The	direction	of	the	arrows	
indicates	the	control	(tail)	and	
target	(head)	of	CNOT	gates.

Suppose	that	a	program	is	generated	so	that	it	can	be	executed	by	QX2.	To	use	this	program	
with	QX4,	you	need	to	renumber	the	qubits	for	the	QX4	topology	shown	in	Fig.	3	and	Fig.	4.	
In	this	case,	there	is	no	change	in	the	circuit	complexity,	but	depending	on	the	topology,	
the	circuit	complexity	may	change	due	to	the	occurrence	of	a	bottleneck.	Since	the	error	
rate	increases	as	the	circuit	complexity	increases,	programmers	want	to	reduce	the	circuit	
complexity	if	possible.	

Currently,	for	the	programmer	to	allocate	the	variable	to	be	used	in	the	program	to	qubits	
on	the	hardware,	it	is	necessary	to	refer	to	the	topology.	However,	in	order	to	deal	with	
large-scale	code	and	enhance	reusability of	various	programs	on	different	hardware,	this	
act	should	be	automated.
In	order	to	obtain	the	calculation	result	with	the	highest	fidelity,	it	is	necessary	to	
consider	error	rate of	each	qubit	and	the	topology	of	the	processor,	but	this	should	also	
be	automated.	Automation	for	efficient	use	of	resources	like	a	compiler	in	a	classical	
computer	is	required.	

FIG.	1.	
The	Topology	of	IBMqx2	

FIG.	2.	
The	Topology	of	IBMqx4	

Q0

Q1Q3

Q2

Q4

QASM	program

Q
2

Q
4

Q
3

Q
1

Q
3

Q
0

Q
4

Q
2

processor	topology +

①

②

③

④

Guest	Graph

Host	Graph

This	algorithm	adapts	the	variables	of	the	program	to	the	topology	to	be	high	fidelity.	The	
system	for	mapping	program	variables	to	quantum	bits	has	the	following	procedure.	
1).	 Graph	the	topology	necessary	for	the	program	to	be	executed.	This	is	a	guest	graph.	
2).	 Convert	the	topology	of	the	processor	that	wishes	to	execute	the	algorithm	and	its	error	
rate	to	an	adjacency	matrix.	This	is	a	host	graph.	As	a	guide	for	programmers,	IBM	published	
the	error	rate	of	each	qubit	on	each	processor.	Fidelity	prediction	values	of	the	whole	program	
can	be	derived	by	using	the	circuit	complexity	and	these	numerical	values.	At	this	time,	the	
following	three	error	rates	exist	which	showed	in	Fig.	5.	
a).	Error	accompanying	operation	of	single	qubit	(Gate	error)
b).	Error	accompanying	the	observation	of	a	single	qubit	(Measurement	error)	
c).	Error	accompanying	operation	on	multiple	qubits	(Bi-Qubit	gate	error)	

*Keio	University	Faculty	of	Policy	Management
†Keio	University	Graduate	School	of	Media	and	Governance	
‡	Keio	University	Faculty	of	Environment	and	Information	Studies

3).	 Generate	an	embedded	graph containing	the	guest	graph	in	the	host	graph.	At	this	
time,	the	algorithm	of	shortest	path	problem	can	be	used.	
4).	 Output	a	program	in	which	quantum	variables	are	re-allocated	based	on	the	
embedded	graph.	
5).	 Output	the	estimate	of	the	fidelity	of	the	qubit	observed	by	that	program.	

References
[1]	 J.	Q.	You	and	Franco	Nori,	Superconducting	Circuits	and	Quantum	Information,	Phys.	
Today	58	(11),	42	(2005)	.	
[2]	 IBM,	IBM	Q	experience	Device,	https://quantumexperience.ng.bluemix.net/qx/devices	
(accessed	2018	01	15)	(2017)	
[3]	 Kaori	Ishizaki,	An	algorithm	for	optimizing	movement	of	quantum	variables	on	arbitrary	
physical	qubit	structures,	Bachelor’s	
thesis,	Keio	University	(2011)	
[4]	 Choi,	Byung-Soo	and	Van	Meter,	Rodney,	On	the	Effect	of	Quantum	Interaction	Distance	
on	Quantum	Addition	Circuits,	J.	Emerg.	Technol.	Comput.	Syst,	August	2011,	7,	3,	1550-4832,	
11-17	(2011)	

Embedded	Graph

estimate	of	the	fidelity

Q
1

Q
3

Q
0

Q
4

Q
2

FIG.	3.	A	Program	Made	For	IBMqx2	 FIG.	4.	A	Program	Made	For	IBMqx4	

International	Conference	on	Challenges	in	Quantum	Information	Science,	April	9-11,	2018

adj	={[𝐺" ,	𝐵"$, 	𝐵"&,	0			,		0],				#Q0
[0				,	𝐺$,		𝐵$&,	0			,		0],				#Q1
[0				,	0						,		𝐺& ,	0			,			0],			#Q2
[0				,	0						,	𝐵'& ,	𝐺' ,		0],			#Q3
[0				,	0						,	𝐵(& ,	0				,	𝐺(]				#Q4	}	

Q0			Q1			Q2			Q3			Q4

FIG.	6.	
The	adjacency	matrix	of	IBMqx2	

𝑈

𝑈
a	(Q0)

a	(Q1)

c	(Q0,Q1)

b	(Q1)

𝑈𝑄0	|0⟩

𝑄1	|0⟩

a	(Q0)

FIG.	5.	Gate	error(a),	Measurement	error(b), Multi-Qubit	gate	error		

In	our	host	graph	adjacency	matrix,	Gate	error	(G)	and	Bi-Qubit		error	(B)	can	be	
expressed	as	weighting	on	the	matrix	diagonal.	Also,	Multi-Qubit	gate	errors	can	be	
represented	as	a	weighting	between	two	qubits.	Fig.	6 is	the	adjacency	matrix	of	IBMqx2.

FIG.	7.	
Mapping	Program	Variables	to	Qubits

